ﻻ يوجد ملخص باللغة العربية
We investigate signs of Active Galactic Nucleus (AGN) in the luminous infrared galaxy NGC 3256 at both infrared and X-ray wavelengths. NGC 3256 has double, the Northern and Southern, nuclei (hereafter, N and S nuclei, respectively). We show that the Spitzer IRAC colors extracted at the S nucleus are AGN-like, and the Spitzer IRS spectrum is bluer at <6um than at the N nucleus. We built for the S nucleus an AGN-starburst composite model with a heavily absorbed AGN to successfully reproduce not only the IRAC and IRS specrophotometries at ~3arcsec but also the very deep silicate 9.7um absorption observed at 0.36 scale by Diaz-Santos et al. We found a 2.2um compact source at the S nucleus in a HST NICMOS image and identified its unresolved core (at 0.26 resolution) with the compact core in previous mid-infrared observations at comparable resolution. The flux of the 2.2umm core is consistent with our AGN spectral energy distribution model. We also analyzed a deeper than ever Chandra X-ray spectrum of the unresolved (at 0.5 resolution) source at the S nucleus. We found that a dual-component power-law model (for primary and scattered ones) fits an apparently very hard spectrum with a moderately large absorption on the primary component. Together with a limit on equivalent width of a fluorescent Fe-K emission line at 6.4 keV, the X-ray spectrum is consistent with a typical Compton-thin Seyfert 2. We therefore suggest that the S nucleus hosts a heavily absorbed low-luminosity AGN.
We present results from GMRT and Chandra observations of the NGC 1550 galaxy group. Although previously thought of as relaxed, we show evidence that gas sloshing and active galactic nucleus (AGN) heating have affected the structure of the system. The
In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Milli
The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observati
We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z=0.005) has been investigated for decades in different energy bands and shows radio lobes and a low luminosity active galactic nucleus (LLAGN)
In this work, which is a continuation of Castello-Mor et al. (2016), we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we ri