ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonparametric Relational Topic Models through Dependent Gamma Processes

169   0   0.0 ( 0 )
 نشر من قبل Junyu Xuan
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional Relational Topic Models provide a way to discover the hidden topics from a document network. Many theoretical and practical tasks, such as dimensional reduction, document clustering, link prediction, benefit from this revealed knowledge. However, existing relational topic models are based on an assumption that the number of hidden topics is known in advance, and this is impractical in many real-world applications. Therefore, in order to relax this assumption, we propose a nonparametric relational topic model in this paper. Instead of using fixed-dimensional probability distributions in its generative model, we use stochastic processes. Specifically, a gamma process is assigned to each document, which represents the topic interest of this document. Although this method provides an elegant solution, it brings additional challenges when mathematically modeling the inherent network structure of typical document network, i.e., two spatially closer documents tend to have more similar topics. Furthermore, we require that the topics are shared by all the documents. In order to resolve these challenges, we use a subsampling strategy to assign each document a different gamma process from the global gamma process, and the subsampling probabilities of documents are assigned with a Markov Random Field constraint that inherits the document network structure. Through the designed posterior inference algorithm, we can discover the hidden topics and its number simultaneously. Experimental results on both synthetic and real-world network datasets demonstrate the capabilities of learning the hidden topics and, more importantly, the number of topics.



قيم البحث

اقرأ أيضاً

390 - Jinhui Yuan , Fei Gao , Qirong Ho 2014
When building large-scale machine learning (ML) programs, such as big topic models or deep neural nets, one usually assumes such tasks can only be attempted with industrial-sized clusters with thousands of nodes, which are out of reach for most pract itioners or academic researchers. We consider this challenge in the context of topic modeling on web-scale corpora, and show that with a modest cluster of as few as 8 machines, we can train a topic model with 1 million topics and a 1-million-word vocabulary (for a total of 1 trillion parameters), on a document collection with 200 billion tokens -- a scale not yet reported even with thousands of machines. Our major contributions include: 1) a new, highly efficient O(1) Metropolis-Hastings sampling algorithm, whose running cost is (surprisingly) agnostic of model size, and empirically converges nearly an order of magnitude faster than current state-of-the-art Gibbs samplers; 2) a structure-aware model-parallel scheme, which leverages dependencies within the topic model, yielding a sampling strategy that is frugal on machine memory and network communication; 3) a differential data-structure for model storage, which uses separate data structures for high- and low-frequency words to allow extremely large models to fit in memory, while maintaining high inference speed; and 4) a bounded asynchronous data-parallel scheme, which allows efficient distributed processing of massive data via a parameter server. Our distribution strategy is an instance of the model-and-data-parallel programming model underlying the Petuum framework for general distributed ML, and was implemented on top of the Petuum open-source system. We provide experimental evidence showing how this development puts massive models within reach on a small cluster while still enjoying proportional time cost reductions with increasing cluster size, in comparison with alternative options.
We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is a ble to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.
We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of v ertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques. Statistical consistency of our estimator is established under some conditions.
143 - Damir Korenv{c}ic 2020
Topic models are widely used unsupervised models capable of learning topics - weighted lists of words and documents - from large collections of text documents. When topic models are used for discovery of topics in text collections, a question that ar ises naturally is how well the model-induced topics correspond to topics of interest to the analyst. In this paper we revisit and extend a so far neglected approach to topic model evaluation based on measuring topic coverage - computationally matching model topics with a set of reference topics that models are expected to uncover. The approach is well suited for analyzing models performance in topic discovery and for large-scale analysis of both topic models and measures of model quality. We propose new measures of coverage and evaluate, in a series of experiments, different types of topic models on two distinct text domains for which interest for topic discovery exists. The experiments include evaluation of model quality, analysis of coverage of distinct topic categories, and the analysis of the relationship between coverage and other methods of topic model evaluation. The paper contributes a new supervised measure of coverage, and the first unsupervised measure of coverage. The supervised measure achieves topic matching accuracy close to human agreement. The unsupervised measure correlates highly with the supervised one (Spearmans $rho geq 0.95$). Other contributions include insights into both topic models and different methods of model evaluation, and the datasets and code for facilitating future research on topic coverage.
Supervised topic models can help clinical researchers find interpretable cooccurence patterns in count data that are relevant for diagnostics. However, standard formulations of supervised Latent Dirichlet Allocation have two problems. First, when doc uments have many more words than labels, the influence of the labels will be negligible. Second, due to conditional independence assumptions in the graphical model the impact of supervised labels on the learned topic-word probabilities is often minimal, leading to poor predictions on heldout data. We investigate penalized optimization methods for training sLDA that produce interpretable topic-word parameters and useful heldout predictions, using recognition networks to speed-up inference. We report preliminary results on synthetic data and on predicting successful anti-depressant medication given a patients diagnostic history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا