ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements

204   0   0.0 ( 0 )
 نشر من قبل Gijs de Lange
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively-shunted single elements behave as transmon qubits with electrically tunable transition frequencies. Two-element circuits also exhibit transmon-like behavior near zero applied flux, but behave as flux qubits at half the flux quantum, where non-sinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in magnetic field.



قيم البحث

اقرأ أيضاً

Single photon detectors are key for time-correlated photon counting applications [1] and enable a host of emerging optical quantum information technologies [2]. So far, the leading approach for continuous and efficient single-photon detection in the optical domain has been based on semiconductor photodiodes [3]. However, there is a paucity of efficient and continuous single-photon detectors in the microwave regime, because photon energies are four to five orders of magnitude lower therein and conventional photodiodes do not have that sensitivity. Here we tackle this gap and demonstrate how itinerant microwave photons can be efficiently and continuously converted to electrical current in a high-quality, semiconducting nanowire double quantum dot that is resonantly coupled to a cavity. In particular, in our detection scheme, an absorbed photon gives rise to a single electron tunneling event through the double dot, with a conversion efficiency reaching 6 %. Our results pave the way for photodiodes with single-shot microwave photon detection, at the theoretically predicted unit efficiency [4].
We introduce Weyl Josephson circuits: small Josephson junction circuits that simulate Weyl band structures. We first formulate a general approach to design circuits that are analogous to Bloch Hamiltonians of a desired dimensionality and symmetry cla ss. We then construct and analyze a six-junction device that produces a 3D Weyl Hamiltonian with broken inversion symmetry and in which topological phase transitions can be triggered emph{in situ}. We argue that currently available superconducting circuit technology allows experiments that probe topological properties inaccessible in condensed matter systems.
Semiconducting-superconducting nanowires attract widespread interest owing to the possible presence of non-abelian Majorana zero modes, which hold promise for topological quantum computation. However, the search for Majorana signatures is challenging because reproducible hybrid devices with desired nanowire lengths and material parameters need to be reliably fabricated to perform systematic explorations in gate voltages and magnetic fields. Here, we exploit a fabrication platform based on shadow walls that enables the in-situ, selective and consecutive depositions of superconductors and normal metals to form normal-superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect-free semiconducting-superconducting interface and, correspondingly, we measure electrically a hard induced superconducting gap. While our advancement is of crucial importance for enhancing the yield of complex hybrid devices, it also offers a straightforward route to explore new material combinations for hybrid devices.
We present low-temperature measurements of low-loss superconducting nanowire-embedded resonators in the low-power limit relevant for quantum circuits. The superconducting resonators are embedded with superconducting nanowires with widths down to 20nm using a neon focused ion beam. In the low-power limit, we demonstrate an internal quality factor up to 3.9x10^5 at 300mK [implying a two-level-system-limited quality factor up to 2x10^5 at 10 mK], not only significantly higher than in similar devices but also matching the state of the art of conventional Josephson-junction-embedded resonators. We also show a high sensitivity of the nanowire to stray infrared photons, which is controllable by suitable precautions to minimize stray photons in the sample environment. Our results suggest that there are excellent prospects for superconducting-nanowire-based quantum circuits.
Silicon-Germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to eletro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconduct ing quantum computing. Here we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 $mu$s, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state of the art performance of superconducting quantum circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا