ﻻ يوجد ملخص باللغة العربية
We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search program. To date, only one of these stars is known to harbor a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analyzed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a gap in metallicity between the thick-disk and high-alpha metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B - V colour cut-off, which excludes low-log g stars with high metallicities, and high-logg star with low-[Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars we suggest to use a sub-sample of stars in a cut-rectangle in the logg - [Fe/H] diagram to overcome the aforementioned issue.
Aims. To explore the chemical pattern of early-type stars with planets, searching for a possible signature of planet formation. In particular, we study a likely relation between the lambda Bootis chemical pattern and the presence of giant planets. Me
The study of stellar parameters of planet-hosting stars, such as metallicity and chemical abundances, help us to understand the theory of planet formation and stellar evolution. Here, we present a catalogue of accurate stellar atmospheric parameters
We analyzed series of spectra obtained for twelve stable RRc stars observed with the echelle spectro- graph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. (2014). We der
Planets orbiting post-common envelope binaries provide fundamental information on planet formation and evolution, especially for the yet nearly unexplored class of circumbinary planets. We searched for such planets in odp, an eclipsing short-period b
[ABRIDGED]We study the carbon abundances with a twofold objective. On the one hand, we want to evaluate the behaviour of carbon in the context of Galactic chemical evolution. On the other hand, we focus on the possible dependence of carbon abundances