ترغب بنشر مسار تعليمي؟ اضغط هنا

Likely detection of water-rich asteroid debris in a metal-polluted white dwarf

216   0   0.0 ( 0 )
 نشر من قبل Roberto Raddi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cool white dwarf SDSS J124231.07+522626.6 exhibits photospheric absorption lines of 8 distinct heavy elements in medium resolution optical spectra, notably including oxygen. The Teff = 13000 K atmosphere is helium-dominated, but the convection zone contains significant amounts of hydrogen and oxygen. The four most common rock-forming elements (O, Mg, Si, and Fe) account for almost all the accreted mass, totalling at least 1.2e+24 g, similar to the mass of Ceres. The time-averaged accretion rate is 2e+10 g/s, one of the highest rates inferred among all known metal-polluted white dwarfs. We note a large oxygen excess, with respect to the most common metal oxides, suggesting that the white dwarf accreted planetary debris with a water content of ~38 per cent by mass. This star, together with GD 61, GD 16, and GD 362, form a small group of outliers from the known population of evolved planetary systems accreting predominantly dry, rocky debris. This result strengthens the hypothesis that, integrated over the cooling ages of white dwarfs, accretion of water-rich debris from disrupted planetesimals may significantly contribute to the build-up of trace hydrogen observed in a large fraction of helium-dominated white dwarf atmospheres.

قيم البحث

اقرأ أيضاً

We have made high precision polarimetric observations of the polluted white dwarf G29-38 with the HIgh Precision Polarimetric Instrument 2. The observations were made at two different observatories -- using the 8.1-m Gemini North Telescope and the 3. 9-m Anglo AustralianTelescope -- and are consistent with each other. After allowing for a small amount of interstellar polarization, the intrinsic linear polarization of the system is found to be 275.3 +/- 31.9 parts-per-million at a position angle of 90.8 +/- 3.8 degrees in the SDSS g band. We compare the observed polarization with the predictions of circumstellar disc models. The measured polarization is small in the context of the models we develop which only allows us to place limits on disc inclination and Bond albedo for optically thin disc geometries. In this case either the inclination is near face-on or the albedo is small -- likely in the range 0.05 to 0.15 -- which is in line with other debris disc measurements. A preliminary search for the effects of G29-38s pulsations in the polarization signal produced inconsistent results. This may be caused by beating effects, indicate a clumpy dust distribution, or be a consequence of measurement systematics.
We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD 394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15d periodicity with a 25 percent amplitude, hyp othesised to be due to metals in a surface accretion spot. We obtained phase-resolved HST/Space Telescope Imaging Spectrograph (STIS) high-resolution far-ultraviolet (FUV) spectra of GD 394 that sample the entire period, along with a large body of supplementary data. We find no evidence for an accretion spot, with the flux, accretion rate and radial velocity of GD 394 constant over the observed timescales at ultraviolet and optical wavelengths. We speculate that the spot may have no longer been present when our observations were obtained, or that the EUV variability is being caused by an otherwise undetected evaporating planet. The atmospheric parameters obtained from separate fits to optical and ultraviolet spectra are inconsistent, as is found for multiple hot white dwarfs. We also detect non-photospheric, high-excitation absorption lines of multiple volatile elements, which could be evidence for a hot plasma cocoon surrounding the white dwarf.
WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3-5 micron flux since 2018. Follow-up Spitzer photometry reveals that emission from the di sc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production.
The element beryllium is detected for the first time in white dwarf stars. This discovery in the spectra of two helium-atmosphere white dwarfs was made possible only because of the remarkable overabundance of Be relative to all other elements, heavie r than He, observed in these stars. The measured Be abundances, relative to chondritic, are by far the largest ever seen in any astronomical object. We anticipate that the Be in these accreted planetary bodies was produced by spallation of one or more of O, C, and N in a region of high fluence of particles of MeV or greater energy.
Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with around 1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations, this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا