ترغب بنشر مسار تعليمي؟ اضغط هنا

Microphysics and dynamics of the Gamma-Ray Burst 121024A

34   0   0.0 ( 0 )
 نشر من قبل Karla Varela
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. The aim of the study is to constrain the physics of gamma-ray bursts (GRBs) by analysing the multi-wavelength afterglow data set of GRB 121024A that covers the full range from radio to X-rays. Methods. Using multi-epoch broad-band observations of the GRB 121024A afterglow, we measured the three characteristic break frequencies of the synchrotron spectrum. We used six epochs of combined XRT and GROND data to constrain the temporal slopes, the dust extinction, the X-ray absorption, and the spectral slope with high accuracy. Two more epochs of combined data from XRT, GROND, APEX, CARMA, and EVLA were used to set constraints on the break frequencies and therefore on the micro-physical and dynamical parameters. Results. The XRT and GROND light curves show a simultaneous and achromatic break at around 49 ks. As a result, the crossing of the synchrotron cooling break is no suitable explanation for the break in the light curve. The multi wavelength data allow us to test two plausible scenarios explaining the break: a jet break, and the end of energy injection. The jet-break scenario requires a hard electron spectrum, a very low cooling break frequency, and a non-spreading jet. The energy injection avoids these problems, but requires $epsilon_e > 1 (k = 2)$, spherical outflow, and $epsilon_B < 10^{-9}$. Conclusions. In light of the extreme microphysical parameters required by the energy-injection model, we favour a jet-break scenario where $ u_m < u_{sa}$ to explain the observations. This scenario gives physically meaningful microphysical parameters, and it also naturally explains the reported detection of linear and circular polarisation.

قيم البحث

اقرأ أيضاً

The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper we propose a new measure to describe spectra: the width of the $EF_E$ spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/GBM and CGRO/BATSE. The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability $<10^{-6}$). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes -- synchrotron and blackbody radiation -- the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78% of long GRBs and 85% of short GRBs are incompatible with the minimum width of standard slow cooling synchrotron emission from a Maxwellian distribution of electrons, with fast cooling spectra predicting even wider spectra. Photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody.
A preponderance of evidence links long-duration, soft-spectrum gamma-ray bursts (GRBs) with the death of massive stars. The observations of the GRB-supernova (SN) connection present the most direct evidence of this physical link. We summarize 30 GRB- SN associations and focus on five ironclad cases, highlighting the subsequent insight into the progenitors enabled by detailed observations. We also address the SN association (or lack thereof) with several sub-classes of GRBs, finding that the X-ray Flash (XRF) population is likely associated with massive stellar death whereas short-duration events likely arise from an older population not readily capable of producing a SN concurrent with a GRB. Interestingly, a minority population of seemingly long-duration, soft-spectrum GRBs show no evidence for SN-like activity; this may be a natural consequence of the range of Ni-56 production expected in stellar deaths.
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html . In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emission beyond ~ 1000 s of event data, and only two GRBs (GRB100316D and GRB101024A) with detections in the survey data prior to the starting of event data. (Some figures shown here are in lower resolution due to the size limit on arXiv. The full resolution version can be found at http://swift.gsfc.nasa.gov/results/batgrbcat/3rdBATcatalog.pdf )
After being launched, GRB jets propagate through dense media prior to their breakout. The jet-medium interaction results in the formation of a complex structured outflow, often referred to as a structured jet. The underlying physics of the jet-medium interaction that sets the post-breakout jet morphology has never been explored systematically. Here we use a suite of 3D simulations to follow the evolution of hydrodynamic long and short gamma-ray bursts (GRBs) jets after breakout to study the post-breakout structure induced by the interaction. Our simulations feature Rayleigh-Taylor fingers that grow from the cocoon into the jet, mix cocoon with jet material and destabilize the jet. The mixing gives rise to a previously unidentified region sheathing the jet from the cocoon, which we denote the jet-cocoon interface (JCI). long GRBs undergo strong mixing, resulting in most of the jet energy to drift into the JCI, while in short GRBs weaker mixing is possible, leading to a comparable amount of energy in the two components. Remarkably, the jet structure (jet-core plus JCI) can be characterized by simple universal angular power-law distributions, with power-law indices that depend solely on the mixing level. This result supports the commonly used power-law angular distribution, and disfavors Gaussian jets. At larger angles, where the cocoon dominates, the structure is more complex. The mixing shapes the prompt emission light curve and implies that typical long GRB afterglows are different from those of short GRBs. Our predictions can be used to infer jet characteristics from prompt and afterglow observations.
Aims. With an observed and rest-frame duration of < 2s and < 0.5s, respectively, GRB090426 could be classified as a short GRB. The prompt detection, both from space and ground-based telescopes, of a bright optical counterpart to this GRB offered a un ique opportunity to complete a detailed study. Methods. Based on an extensive ground-based observational campaign, we obtained the spectrum of the optical afterglow of GRB090426, measuring its redshift and obtaining information about the medium in which the event took place. We completed follow-up observation of the afterglow optical light curve down to the brightness level of the host galaxy that we firmly identified and studied. We also retrieved and analyzed all the available high-energy data of this event, and compared the results with our findings in the optical. This represents one of the most detailed studies of a short-duration event presented so far. Results. The time properties qualify GRB090426 as a short burst. In this case, its redshift of z = 2.61 would be the highest yet found for a GRB of this class. On the other hand, the spectral and energy properties are more similar to those of long bursts. LBT late-time deep imaging identifies a star-forming galaxy at a redshift consistent with that of the GRB. The afterglow lies within the light of its host and shows evidence of local absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا