ترغب بنشر مسار تعليمي؟ اضغط هنا

GraphMat: High performance graph analytics made productive

500   0   0.0 ( 0 )
 نشر من قبل Narayanan Sundaram
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is in C++, and we have been able to write a diverse set of graph algorithms in this framework with the same effort compared to other vertex programming frameworks. GraphMat performs 1.2-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of different graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMatcan naturally benefit from the trend of increasing parallelism on future hardware.



قيم البحث

اقرأ أيضاً

An ever increasing number of configuration parameters are provided to system users. But many users have used one configuration setting across different workloads, leaving untapped the performance potential of systems. A good configuration setting can greatly improve the performance of a deployed system under certain workloads. But with tens or hundreds of parameters, it becomes a highly costly task to decide which configuration setting leads to the best performance. While such task requires the strong expertise in both the system and the application, users commonly lack such expertise. To help users tap the performance potential of systems, we present BestConfig, a system for automatically finding a best configuration setting within a resource limit for a deployed system under a given application workload. BestConfig is designed with an extensible architecture to automate the configuration tuning for general systems. To tune system configurations within a resource limit, we propose the divide-and-diverge sampling method and the recursive bound-and-search algorithm. BestConfig can improve the throughput of Tomcat by 75%, that of Cassandra by 63%, that of MySQL by 430%, and reduce the running time of Hive join job by about 50% and that of Spark join job by about 80%, solely by configuration adjustment.
Cloud computing has become increasingly popular. Many options of cloud deployments are available. Testing cloud performance would enable us to choose a cloud deployment based on the requirements. In this paper, we present an innovative process, imple mented in software, to allow us to assess the quality of the cloud performance data. The process combines performance data from multiple machines, spanning across user experience data, workload performance metrics, and readily available system performance data. Furthermore, we discuss the major challenges of bringing raw data into tidy data formats in order to enable subsequent analysis, and describe how our process has several layers of assessment to validate the quality of the data processing procedure. We present a case study to demonstrate the effectiveness of our proposed process, and conclude our paper with several future research directions worth investigating.
Edge video analytics is becoming the solution to many safety and management tasks. Its wide deployment, however, must first address the tension between inference accuracy and resource (compute/network) cost. This has led to the development of video a nalytics pipelines (VAPs), which reduce resource cost by combining DNN compression/speedup techniques with video processing heuristics. Our measurement study on existing VAPs, however, shows that todays methods for evaluating VAPs are incomplete, often producing premature conclusions or ambiguous results. This is because each VAPs performance varies substantially across videos and time (even under the same scenario) and is sensitive to different subsets of video content characteristics. We argue that accurate VAP evaluation must first characterize the complex interaction between VAPs and video characteristics, which we refer to as VAP performance clarity. We design and implement Yoda, the first VAP benchmark to achieve performance clarity. Using primitive-based profiling and a carefully curated benchmark video set, Yoda builds a performance clarity profile for each VAP to precisely define its accuracy/cost tradeoff and its relationship with video characteristics. We show that Yoda substantially improves VAP evaluations by (1) providing a comprehensive, transparent assessment of VAP performance and its dependencies on video characteristics; (2) explicitly identifying fine-grained VAP behaviors that were previously hidden by large performance variance; and (3) revealing strengths/weaknesses among different VAPs and new design opportunities.
It is common for real-world applications to analyze big graphs using distributed graph processing systems. Popular in-memory systems require an enormous amount of resources to handle big graphs. While several out-of-core approaches have been proposed for processing big graphs on disk, the high disk I/O overhead could significantly reduce performance. In this paper, we propose GraphH to enable high-performance big graph analytics in small clusters. Specifically, we design a two-stage graph partition scheme to evenly divide the input graph into partitions, and propose a GAB (Gather-Apply-Broadcast) computation model to make each worker process a partition in memory at a time. We use an edge cache mechanism to reduce the disk I/O overhead, and design a hybrid strategy to improve the communication performance. GraphH can efficiently process big graphs in small clusters or even a single commodity server. Extensive evaluations have shown that GraphH could be up to 7.8x faster compared to popular in-memory systems, such as Pregel+ and PowerGraph when processing generic graphs, and more than 100x faster than recently proposed out-of-core systems, such as GraphD and Chaos when processing big graphs.
With the ever-increasing adoption of machine learning for data analytics, maintaining a machine learning pipeline is becoming more complex as both the datasets and trained models evolve with time. In a collaborative environment, the changes and updat es due to pipeline evolution often cause cumbersome coordination and maintenance work, raising the costs and making it hard to use. Existing solutions, unfortunately, do not address the version evolution problem, especially in a collaborative environment where non-linear version control semantics are necessary to isolate operations made by different user roles. The lack of version control semantics also incurs unnecessary storage consumption and lowers efficiency due to data duplication and repeated data pre-processing, which are avoidable. In this paper, we identify two main challenges that arise during the deployment of machine learning pipelines, and address them with the design of versioning for an end-to-end analytics system MLCask. The system supports multiple user roles with the ability to perform Git-like branching and merging operations in the context of the machine learning pipelines. We define and accelerate the metric-driven merge operation by pruning the pipeline search tree using reusable history records and pipeline compatibility information. Further, we design and implement the prioritized pipeline search, which gives preference to the pipelines that probably yield better performance. The effectiveness of MLCask is evaluated through an extensive study over several real-world deployment cases. The performance evaluation shows that the proposed merge operation is up to 7.8x faster and saves up to 11.9x storage space than the baseline method that does not utilize history records.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا