ﻻ يوجد ملخص باللغة العربية
MgGeO$_3$-perovskite is known to be a low-pressure analog of MgSiO$_3$-perovskite in many respects, but especially in regard to the post-perovskite transition. As such, investigation of spin state changes in Fe-bearing MgGeO$_3$ might help to clarify some aspects of this type of state change in Fe-bearing MgSiO$_3$. Using DFT+U calculations, we have investigated pressure induced spin state changes in Fe$^{2+}$ and Fe$^{3+}$ in MgGeO$_3$ perovskite and post-perovskite. Owing to the relatively larger atomic size of germanium compared to silicon, germanate phases have larger unit cell volume and inter-atomic distances than equivalent silicate phases at same pressures. As a result, all pressure induced state changes in iron occur at higher pressures in germanate phases than in the silicate ones, be it a spin state change or position change of (ferrous) iron in the perovskite cage. We showed that iron state transitions occur at particular average Fe-O bond-length irrespective of mineral composition (silicate or germanate) or functionals (LDA+U$_{sc}$ or GGA+U$_{sc}$). Ferrous iron substitution decreases the perovskite to post-perovskite (PPv) transition pressure while coupled ferric iron substitution increases it noticeably.
Cubic perovskite oxides are emerging high-mobility transparent conducting oxides (TCOs), but Ge-based TCOs had not been known until the discovery of metastable cubic SrGeO$_3$. $0.5 times 0.4 times 0.2$-mm$^3$ large single crystals of the cubic SrGeO
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH$_3$NH$_3$PbI$_3$. For crystal structures which lack inversion symmetry, the calculated photocurrent density is about $10^{-9}$ A/W, comparable to t
The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic
Spin-state crossover beyond a conventional ligand-field theory has been a fundamental issue in condensed matter physics. Here, we report microscopic observations of spin states and low-energy dynamics through orbital-resolved NMR spectroscopy in the
Cuprous oxide has been conceived as a potential alternative to traditional organic hole transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results