ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling of Entanglement Entropy for the Heisenberg Model on Clusters Joined by Point Contacts

166   0   0.0 ( 0 )
 نشر من قبل Barry Friedman
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scaling of entanglement entropy for the nearest neighbor antiferromagnetic Heisenberg spin model is studied computationally for clusters joined by a single bond. Bisecting the balanced three legged Bethe Cluster, gives a second Renyi entropy and the valence bond entropy which scales as the number of sites in the cluster. For the analogous situation with square clusters, i.e. two $L times L$ clusters joined by a single bond, numerical results suggest that the second Renyi entropy and the valence bond entropy scales as $L$. For both systems, the environment and the system are connected by the single bond and interaction is short range. The entropy is not constant with system size as suggested by the area law.



قيم البحث

اقرأ أيضاً

We examine the entanglement properties of the spin-half Heisenberg model on the two-dimensional square-lattice bilayer based on quantum Monte Carlo calculations of the second Renyi entanglement entropy. In particular, we extract the dominant area-law contribution to the bipartite entanglement entropy that shows a non-monotonous behavior upon increasing the inter-layer exchange interaction: a local maximum in the area-law coefficient is located at the quantum critical point separating the antiferromagnetically ordered region from the disordered dimer-singlet regime. Furthermore, we consider subleading logarithmic corrections to the Renyi entanglement entropy scaling. Employing different subregion shapes, we isolate the logarithmic corner term from the logarithmic contribution due to Goldstone modes that is found to be enhanced in the limit of decoupled layers. At the quantum critical point, we estimate a contribution of $0.016(1)$ due to each $90^{circ}$ corner. This corner term at the SU(2) quantum critical point deviates from the Gaussian theory value, while it compares well with recent numerical linked cluster calculations on the bilayer model.
The scaling of entanglement entropy is computationally studied in several $1le d le 2$ dimensional free fermion systems that are connected by one or more point contacts (PC). For both the $k$-leg Bethe lattice $(d =1)$ and $d=2$ rectangular lattices with a subsystem of $L^d$ sites, the entanglement entropy associated with a {sl single} PC is found to be generically $S sim L$. We argue that the $O(L)$ entropy is an expression of the subdominant $O(L)$ entropy of the bulk entropy-area law. For $d=2$ (square) lattices connected by $m$ PCs, the area law is found to be $S sim aL^{d-1} + b m log{L}$ and is thus consistent with the anomalous area law for free fermions ($S sim L log{L}$) as $m rightarrow L$. For the Bethe lattice, the relevance of this result to Density Matrix Renormalization Group (DMRG) schemes for interacting fermions is discussed.
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show that at an conformally-invariant critical point of O(3) transition, the entanglement entropy exhibits universal scaling behavior of area law with logarithmic corner corrections and the obtained correction exponent represents the current central charge of the critical theory. Then we move on to the deconfined quantum critical point, where although we still observe similar scaling behavior but with a very different exponent. Namely, the corner correction exponent is found to be negative. Such a negative exponent is in sharp contrast with positivity condition of the Renyi entanglement entropy, which holds for unitary conformal field theories. Our results unambiguously reveal fundamental differences between DQC and QCPs described by unitary CFTs.
We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In b oth cases, we concentrate on the valence bond solid (VBS) phase and describe such a phase with the bond-operator representation. Within this formalism, the original spin Hamiltonian is mapped into an effective interacting boson model for the triplet excitations. We study the effective Hamiltonian at the harmonic approximation and determine the spectrum of the elementary triplet excitations. We then follow an analytical procedure, which is based on a modified spin-wave theory for finite systems and was originally employed to calculate the entanglement entropies of magnetic ordered phases, and calculate the entanglement entropies of the VBS ground states. In particular, we consider one-dimensional (line) subsystems within the square lattice, a choice that allows us to consider line subsystems with sizes up to $L = 1000$. We combine such a procedure with the results of the bond-operator formalism at the harmonic level and show that, for both dimerized Heisenberg models, the entanglement entropies of the corresponding VBS ground states obey an area law as expected for gapped phases. For both columnar-dimer and staggered-dimer models, we also show that the entanglement entropies increase but do not diverge as the dimerization decreases and the system approaches the Neel--VBS quantum phase transition. Finally, the entanglement spectra associated with the VBS ground states are presented.
We study the quantum entanglement of the spin and orbital degrees of freedom in the one- dimensional Kugel-Khomskii model, which includes both gapless and gapped phases, using analytical techniques and exact diagonalization with up to 16 sites. We co mpute the entanglement entropy, and the entanglement spectra using a variety of partitions or cuts of the Hilbert space, including two distinct real-space cuts and a momentum-space cut. Our results show the Kugel-Khomski model possesses a number of new features not previously encountered in studies of the entanglement spectra. Notably, we find robust gaps in the entanglement spectra for both gapped and gapless phases with the orbital partition, and show these are not connected to each other. We observe the counting of the low-lying entanglement eigenvalues shows that the virtual edge picture which equates the low-energy Hamiltonian of a virtual edge, here one gapless leg of a two-leg ladder, to the low-energy entanglement Hamiltonian breaks down for this model, even though the equivalence has been shown to hold for similar cut in a large class of closely related models. In addition, we show that a momentum space cut in the gapless phase leads to qualitative differences in the entanglement spectrum when compared with the same cut in the gapless spin-1/2 Heisenberg spin chain. We emphasize the new information content in the entanglement spectra compared to the entanglement entropy, and using quantum entanglement present a refined phase diagram of the model. Using analytical arguments, exploiting various symmetries of the model, and applying arguments of adiabatic continuity from two exactly solvable points of the model, we are also able to prove several results regarding the structure of the low-lying entanglement eigenvalues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا