ﻻ يوجد ملخص باللغة العربية
The scaling of entanglement entropy for the nearest neighbor antiferromagnetic Heisenberg spin model is studied computationally for clusters joined by a single bond. Bisecting the balanced three legged Bethe Cluster, gives a second Renyi entropy and the valence bond entropy which scales as the number of sites in the cluster. For the analogous situation with square clusters, i.e. two $L times L$ clusters joined by a single bond, numerical results suggest that the second Renyi entropy and the valence bond entropy scales as $L$. For both systems, the environment and the system are connected by the single bond and interaction is short range. The entropy is not constant with system size as suggested by the area law.
We examine the entanglement properties of the spin-half Heisenberg model on the two-dimensional square-lattice bilayer based on quantum Monte Carlo calculations of the second Renyi entanglement entropy. In particular, we extract the dominant area-law
The scaling of entanglement entropy is computationally studied in several $1le d le 2$ dimensional free fermion systems that are connected by one or more point contacts (PC). For both the $k$-leg Bethe lattice $(d =1)$ and $d=2$ rectangular lattices
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show
We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In b
We study the quantum entanglement of the spin and orbital degrees of freedom in the one- dimensional Kugel-Khomskii model, which includes both gapless and gapped phases, using analytical techniques and exact diagonalization with up to 16 sites. We co