ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong interaction between electrons and collective excitations in multiband superconductor MgB2

457   0   0.0 ( 0 )
 نشر من قبل Adam Kaminski
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a tunable laser ARPES to study the electronic properties of the prototypical multiband BCS superconductor MgB2. Our data reveal a strong renormalization of the dispersion (kink) at ~65 meV, which is caused by coupling of electrons to the E2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB2 does not change significantly across Tc. More interestingly, we observe strong coupling to a second, lower energy collective mode at binding energy of 10 meV. This excitation vanishes above Tc and is likely a signature of the elusive Leggett mode.


قيم البحث

اقرأ أيضاً

214 - J. Horvat , W. K. Yeoh , 2005
Interaction between the superconductor and ferromagnet in MgB2/Fe wires results in either a plateau or a peak effect in the field dependence of transport critical current, Ic(H). This is in addition to magnetic shielding of external field. Current th eoretical models cannot account for the observed peak effect in Ic(H). This paper shows that the theoretical explanation of the peak effect should be sought in terms of interaction between superconductor and magnetic domain structure, obtained after re-magnetization of the iron sheath by the self-field of the current. There is a minimum value of critical current, below which the re-magnetization of the iron sheath and peak effect in Ic(H) are not observed.
We report observation of Leggetts collective mode in a multi-band MgB2 superconductor with T_c=39K arising from the fluctuations in the relative phase between two superconducting condensates. The novel mode is observed by Raman spectroscopy at 9.4 me V in the fully symmetric scattering channel. The observed mode frequency is consistent with theoretical considerations based on the first principle computations.
We present {it ab-initio} time-dependent density-functional theory calculation results for low-energy collective electron excitations in $textrm{MgB}_2$. The existence of a long-lived collective excitation corresponding to coherent charge density flu ctuations between the boron $sigma$- and $pi$- bands ($sigmapi$ mode) is demonstrated. This mode has a sine-like oscillating dispersion for energies below 0.5 eV. At even lower energy we find another collective mode ($sigmasigma$ mode). We show the strong impact of local-field effects on dielectric functions in MgB$_2$. These effects account for the long q-range behavior of the modes. We discuss the physics that these collective excitations bring to the energy region typical for lattice vibrations.
308 - A. Dulcic , M. Pozek , D. Paar 2002
Field and temperature microwave measurements have been carried out on MgB2 thin film grown on Al2O3 substrate. The analysis reveals the mean field coherence length xi_{MF} in the mixed state and a temperature independent anisotropy ratio gamma_{MF} = xi_{MF}^{ab} / xi_{MF}^c approximately 2. At the superconducting transition, the scaling of the fluctuation conductivity yields the Ginzburg-Landau coherence length with a different anisotropy ratio gamma_{GL} = 2.8, also temperature independent.
147 - G. Burnell 2001
Since the discovery of superconductivity in MgB2 considerable progress has been made in determining the physical properties of the material, which are promising for bulk conductors. Tunneling studies show that the material is reasonably isotropic and has a well-developed s-wave energy gap (∆), implying that electronic devices based on MgB2 could operate close to 30K. Although a number of groups have reported the formation of thin films by post-reaction of precursors, heterostructure growth is likely to require considerable technological development, making single-layer device structures of most immediate interest. MgB2 is unlike the cuprate superconductors in that grain boundaries do not form good Josephson junctions, and although a SQUID based on MgB2 nanobridges has been fabricated, the nanobridges themselves do not show junction-like properties. Here we report the successful creation of planar MgB2 junctions by localised ion damage in thin films. The critical current (IC) of these devices is strongly modulated by applied microwave radiation and magnetic field. The product of the critical current and normal state resistance (ICRN) is remarkably high, implying a potential for very high frequency applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا