ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus

191   0   0.0 ( 0 )
 نشر من قبل Qing-Ming Zhang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent renaissance of black phosphorus (BP) as a two-dimensional 2D layered material has generated tremendous interest in its tunable electronic band gap and highly anisotropic transport properties that offer new opportunities for device applications. Many of these outstanding properties are attributed to its unique structural characters that still need elucidation. Here we show Raman measurements that reveal an ultralow-frequency collective compression mode (CCM), which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling in BP, which is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of the thickness up to tens of atomic layers, which is considerably higher than those previously achieved by using high-frequency Raman modes. These results offer fundamental insights and practical tools for exploring multilayer BP in new device applications.



قيم البحث

اقرأ أيضاً

With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene fie ld-effect transistors. We find a very particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and propose a resistor network model including screening and interlayer coupling to explain the experimental findings. In particular, our model does not invoke modification of the linear energy-band structure of graphene for the multilayer case. Noise reduction in nano-scale few-layer graphene transistors is experimentally demonstrated and can be understood within this model as well.
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.
Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transitio n metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single layer WSe2 and MoS2 building blocks. We observe a large Stokes-like shift of ~100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
By using the first-principles method based on density of functional theory, we study the electronic properties of twisted bilayer graphene with some specific twist angles and interlayer spacings. With the decrease of the twist angle(the unit cell bec omes larger), the energy band becomes narrower and Coulomb repulsion increases, leading to the enhancement of electronic correlation; On the other hand, as the interlayer spacing decreases and the interlayer coupling becomes stronger, the correlation becomes stronger. By tuning the interlayer coupling, we can realize the strongly correlated state with the band width less than 0.01 eV in medium-sized Moire cell of twisted bilayer graphene. These results demonstrate that the strength of electronic correlation in twisted bilayer graphene is closely related to two factors: the size of unit cell and the distance between layers. Consequently, a conclusion can be drawn that the strong electronic correlation in twisted bilayer graphene originates from the synergistic effect of the large size of Moire cell and strong interlayer coupling on its electronic structure.
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si tu on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blue shift of the emission with increasing temperature is well described using a two oscillator model for the temperature dependence of the band gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا