ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimming and CO absorption toward the AA Tau protoplanetary disk: An infalling flow caused by disk instability?

122   0   0.0 ( 0 )
 نشر من قبل Ke Zhang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AA Tau, a classical T Tauri star in the Taurus cloud, has been the subject of intensive photometric monitoring for more than two decades due to its quasi-cyclic variation in optical brightness. Beginning in 2011, AA Tau showed another peculiar variation -- its median optical though near-IR flux dimmed significantly, a drop consistent with a 4-mag increase in visual extinction. It has stayed in the faint state since.Here we present 4.7um CO rovibrational spectra of AA Tau over eight epochs, covering an eleven-year time span, that reveal enhanced 12CO and 13CO absorption features in the $J_{rm low}leqslant$13 transitions after the dimming. These newly appeared absorptions require molecular gas along the line of sight with T~500 K and a column density of log (N12CO)~18.5 cm^{-2}, with line centers that show a constant 6 km s$^{-1}$ redshift. The properties of the molecular gas confirm an origin in the circumstellar material. We suggest that the dimming and absorption are caused by gas and dust lifted to large heights by a magnetic buoyancy instability. This material is now propagating inward, and on reaching the star within a few years will be observed as an accretion outburst.



قيم البحث

اقرأ أيضاً

We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/Submillimeter Array ( ALMA), revealing that its dust emission has a quite small radius of ~ 3.4 au and presents a central cavity of ~ 1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.
AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution ($sim$0.2) ALMA observations of th e 0.87 and 1.3~mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.34, 0.66, and 0.99, all viewed at a modest inclination of 59.1$^{circ}pm$0.3$^{circ}$ (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features including a `bridge of emission that connects opposite sides of the innermost ring. We speculate on the nature of this `bridge in light of accompanying observations of HCO$^+$ and $^{13}$CO (J=3--2) line emission. The HCO$^+$ emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO$^+$ line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.
The protoplanetary disk around HL Tau is so far the youngest candidate of planet formation, and it is still embedded in a protostellar envelope with a size of thousands of au. In this work, we study the gas kinematics in the envelope and its possible influence on the embedded disk. We present our new ALMA cycle 3 observational results of HL Tau in the 13CO (2-1) and C18O (2-1) emission at resolutions of 0.8 (110 au), and we compare the observed velocity pattern with models of different kinds of gas motions. Both the 13CO and C18O emission lines show a central compact component with a size of 2 (280 au), which traces the protoplanetary disk. The disk is clearly resolved and shows a Keplerian motion, from which the protostellar mass of HL Tau is estimated to be 1.8+/-0.3 M$_odot$, assuming the inclination angle of the disk to be 47 deg from the plane of the sky. The 13CO emission shows two arc structures with sizes of 1000-2000 au and masses of 3E-3 M$_odot$ connected to the central disk. One is blueshifted and stretches from the northeast to the northwest, and the other is redshifted and stretches from the southwest to the southeast. We find that simple kinematical models of infalling and (counter-)rotating flattened envelopes cannot fully explain the observed velocity patterns in the arc structures. The gas kinematics of the arc structures can be better explained with three-dimensional infalling or outflowing motions. Nevertheless, the observed velocity in the northwestern part of the blueshifted arc structure is ~60-70% higher than the expected free-fall velocity. We discuss two possible origins of the arc structures: (1) infalling flows externally compressed by an expanding shell driven by XZ Tau and (2) outflowing gas clumps caused by gravitational instabilities in the protoplanetary disk around HL Tau.
AA Tau is a well studied young stellar object that presents many of the photometric characteristics of a Classical T Tauri star (CTTS), including short-timescale stochastic variability attributed to spots and/or accretion as well as long duration dim ming events attributed to occultations by vertical features (e.g., warps) in its circumstellar disk. We present new photometric observations of AA Tau from the Kilodegree Extremely Little Telescope North (KELT-North) which reveal a deep, extended dimming event in 2011, which we show supports the interpretation by Bouvier et al. (2013) of an occultation by a high-density feature in the circumstellar disk located >8 AU from the star. We also present KELT-North observations of V409 Tau, a relatively unstudied young stellar object also in Taurus-Auriga, showing short timescale erratic variability, along with two separate long and deep dimming events, one from January 2009 through late October 2010, and the other from March 2012 until at least September 2013. We interpret both dimming events to have lasted more than 600 days, each with a depth of ~1.4 mag. From a spectral energy distribution analysis, we propose that V409 Tau is most likely surrounded by a circumstellar disk viewed nearly edge-on, and using Keplerian timescale arguments we interpret the deep dimmings of V409 Tau as occultations from one or more features within this disk >10 AU from the star. In both AA Tau and V409 Tau, the usual CTTS short-timescale variations associated with accretion processes close to the stars continue during the occultations, further supporting the distant occulting material interpretation. Like AA Tau, V409 Tau serves as a laboratory for studying the detailed structure of the protoplanetary environments of T Tauri disks, specifically disk structures that may be signposts of planet formation at many AU out in the disk.
As the earliest stage of planet formation, massive, optically thick, and gas rich protoplanetary disks provide key insights into the physics of star and planet formation. When viewed edge-on, high resolution images offer a unique opportunity to study both the radial and vertical structures of these disks and relate this to vertical settling, radial drift, grain growth, and changes in the midplane temperatures. In this work, we present multi-epoch HST and Keck scattered light images, and an ALMA 1.3 mm continuum map for the remarkably flat edge-on protoplanetary disk SSTC2DJ163131.2-242627, a young solar-type star in $rho$ Ophiuchus. We model the 0.8 $mu$m and 1.3 mm images in separate MCMC runs to investigate the geometry and dust properties of the disk using the MCFOST radiative transfer code. In scattered light, we are sensitive to the smaller dust grains in the surface layers of the disk, while the sub-millimeter dust continuum observations probe larger grains closer to the disk midplane. An MCMC run combining both datasets using a covariance-based log-likelihood estimation was marginally successful, implying insufficient complexity in our disk model. The disk is well characterized by a flared disk model with an exponentially tapered outer edge viewed nearly edge-on, though some degree of dust settling is required to reproduce the vertically thin profile and lack of apparent flaring. A colder than expected disk midplane, evidence for dust settling, and residual radial substructures all point to a more complex radial density profile to be probed with future, higher resolution observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا