ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optical Survey of the Partially Embedded Young Cluster in NGC 7129

112   0   0.0 ( 0 )
 نشر من قبل Scott Dahm
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 7129 is a bright reflection nebula located in the molecular cloud complex near l=105.4, b=+9.9, about 1.15 kpc distant. Embedded within the reflection nebula is a young cluster dominated by a compact grouping of four early-type stars: BD+65 1638 (B3V), BD+65 1637 (B3e), SVS 13 (B5e), and LkH-alpha 234 (B8e). About 80 H-alpha emission sources brighter than V~23 are identified in the region, many of which are presumably T Tauri star members of the cluster. We also present deep (V~23), optical (VRI) photometry of a field centered on the reflection nebula and spectral types for more than 130 sources determined from low dispersion, optical spectroscopy. The narrow pre-main sequence evident in the color-magnitude diagram suggests that star formation was rapid and coeval. A median age of about 1.8 Myr is inferred for the H-alpha and literature-identified X-ray emission sources having established spectral types, using pre-main sequence evolutionary models. Our interpretation of the structure of the molecular cloud and the distribution of young stellar objects is that BD+65 1638 is primarily responsible for evacuating the blister-like cavity within the molecular cloud. LkH-alpha 234 and several embedded sources evident in near infrared adaptive optics imaging have formed recently within the ridge of compressed molecular gas. The compact cluster of low-mass stars formed concurrently with the early-type members, concentrated within a central radius of ~0.7 pc. Star formation is simultaneously occurring in a semi-circular arc some ~3 pc in radius that outlines remaining dense regions of molecular gas. High dispersion, optical spectra are presented for BD+65 1638, BD+65 1637, SVS 13, LkH-alpha 234, and V350 Cep. These spectra are discussed in the context of the circumstellar environments inferred for these stars.



قيم البحث

اقرأ أيضاً

145 - B. Stelzer SUPA 2009
The reflection nebula NGC 7129 has long been known to be a site of recent star formation as evidenced, e.g., by the presence of deeply embedded protostars and HH objects. However, studies of the stellar population produced in the star formation proce ss have remained rudimentary. At a presumed age of ~3 Myr, NGC7129 is in the critical range where disks around young stars disappear. We make use of Chandra X-ray and Spitzer and 2MASS IR imaging observations to identify the pre-main sequence stars in NGC7129. We define a sample of Young Stellar Objects based on color-color diagrams composed from IR photometry between 1.6 and 8 mu, from 2MASS and Spitzer, and based on X-ray detected sources from a Chandra observation. This sample is composed of 26 Class II and 25 Class III candidates. The sample is estimated to be complete down to ~ 0.5 solar masses. The most restricted and least biased sub-sample of pre-main sequence stars is composed of lightly absorbed (A_V < 5 mag) stars in the cluster core. This sample comprises 7 Class II and 14 Class III sources, it has a disk fraction of 33^{+24}_{-19} %, and a median X-ray luminosity of log (L_x) [erg/s] = 30.3. Despite the various uncertainties related to the sample selection, absorption, mass distribution, distance and, consequently, the computation of disk fraction and X-ray luminosities, the data yield consistent results. In particular, we confirm the age of ~3 Myr for the NGC7129 cluster. The derived disk fraction is similar to that of sigma Orionis, smaller than that of Cha I (~2 Myr), and larger than that of Upper Sco (5 Myr). The X-ray luminosity function is similar to that of NGC 2264 (2 Myr) but fainter than that of the Orion Nebula Cluster (1 Myr).
Young open clusters located in the outer Galaxy provide us with an opportunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and H alpha photometric study of the young open clusters NGC 162 4 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by <E(B-V)> = 0.92 +/- 0.05 and 0.74 +/- 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (Rv,cl = 5.2 +/- 0.3). Using the zero-age main sequence fitting method we confirm that NGC 1624 is 6.0 +/- 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 +/- 0.2 kpc. The results from isochrone fitting in the Hertzsprung-Russell diagram indicate the ages of NGC 1624 and NGC 1931 to be less than 4 Myr and 1.5 - 2.0 Myr, respectively. We derived the initial mass function (IMF) of the clusters. The slope of the IMF (Gamma_NGC 1624 = -2.0 +/- 0.2 and Gamma_NGC 1931 = -2.0 +/- 0.1) appears to be steeper than that of the Salpeter/Kroupa IMF. We discuss the implication of the derived IMF based on simple Monte-Carlo simulations and conclude that the property of star formation in the clusters seems not to be far different from that in the solar neighborhood.
We present a UBV I and H alpha photometric study of the young open cluster NGC 1893 in the H II region W8 (IC 410 or Sh 2-236). A total of 65 early-type members are selected from photometric diagrams. A mean reddening of the stars is <E(B-V)> = 0.563 +/- 0.083 mag. The published photometric data in the near- and mid-infrared passbands are used to test the reddening law toward the cluster, and we confirm that the reddening law is normal (R_V = 3.1). Zero-age main sequence fitting gives a distance modulus of V_0 - M_V = 12.7 +/- 0.2 mag, equivalent to 3.5 +/- 0.3 kpc. From H alpha photometry 125 H alpha emission stars and candidates are identified as pre-main sequence (PMS). The lists of young stellar objects and X-ray sources published by previous studies allow us to select a large number of PMS members down to 1 M_sun. Isochrone fitting in the Hertzsprung-Russell diagram gives a turn-off age of 1.5 Myr and the median age of 1.9 Myr from the PMS members with a spread of 5 Myr. We derive the initial mass function (IMF) for stars with mass larger than 1 M_sun. The slope of the IMF (Gamma = -1.3 +/- 0.1) is well consistent with the Salpeter/Kroupa IMF. A total mass of the cluster appears to be in excess of 1,300 M_sun. Finally, we estimate the mass accretion rate of 82 PMS members in the mass range of 0.6 M_sun to 5 M_sun.
High-resolution HST imaging of the compact planetary nebula NGC 6644 has revealed two pairs of bipolar lobes and a central ring lying close to the plane of the sky. From mid-infrared imaging obtained with the Gemini Telescope, we have found a dust to rus which is oriented nearly perpendicular to one pair of the lobes. We suggest that NGC 6644 is a multipolar nebula and have constructed a 3-D model which allows the visualization of the object from different lines of sight. These results suggest that NGC 6644 may have similar intrinsic structures as other multipolar nebulae and the phenomenon of multipolar nebulosity may be more common than previously believed.
This study is part of the project ``CORE, an IRAM/NOEMA large program consisting of observations of the millimeter continuum and molecular line emission towards 20 selected high-mass star forming regions. We focus on IRAS23385+6053, which is believed to be the least evolved source of the CORE sample. The observations were performed at ~1.4 mm and employed three configurations of NOEMA and additional single-dish maps, merged with the interferometric data to recover the extended emission. Our correlator setup covered a number of lines from well-known hot core tracers and a few outflow tracers. The angular (~0.45$-$0.9) and spectral (0.5 km/s) resolutions were sufficient to resolve the clump in IRAS23385+6053 and investigate the existence of large-scale motions due to rotation, infall, or expansion. We find that the clump splits into six distinct cores when observed at sub-arcsecond resolution. These are identified through their 1.4 mm continuum and molecular line emission. We produce maps of the velocity, line width, and rotational temperature from the methanol and methyl cyanide lines, which allow us to investigate the cores and reveal a velocity and temperature gradient in the most massive core. We also find evidence of a bipolar outflow, possibly powered by a low-mass star. We present the tentative detection of a circumstellar self-gravitating disk lying in the most massive core and powering a large-scale outflow previously known in the literature. In our scenario, the star powering the flow is responsible for most of the luminosity of IRAS23385+6053 (~$3000~L_odot$). The other cores, albeit with masses below the corresponding virial masses, appear to be accreting material from their molecular surroundings and are possibly collapsing or on the verge of collapse. We conclude that we are observing a sample of star-forming cores that is bound to turn into a cluster of massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا