ﻻ يوجد ملخص باللغة العربية
Motivated by the neutrino data, an extension of the Standard Model with three Higgs-boson doublets has been proposed. Imposing an O(2) x Z2 family symmetry, a neutrino mixing matrix with theta23 = pi/4 and theta13 = 0 appears in a natural way. Even though these values for the mixing matrix do not follow the recent experimental constraints, they are nevertheless a good approximation. We study the Higgs potential of this model in detail. We apply recent methods which allow for the study of any three-Higgs-boson doublet model. It turns out that for a variety of parameters the potential is stable, has the correct electroweak symmetry breaking, and gives the correct vacuum expectation value.
Stability, electroweak symmetry breaking, and the stationarity equations of the general three-Higgs-doublet model (3HDM) where all doublets carry the same hypercharge are discussed in detail. Employing the bilinear formalism the study of the 3HDM pot
For potentials with n-Higgs-boson doublets stability, electroweak symmetry breaking, and the stationarity equations are discussed in detail. This is done within the bilinear formalism which simplifies the investigation, in particular since irrelevant
We discuss a realization of the non-abelian group O(2) as a family symmetry for the lepton sector. The reflection contained in O(2) acts as a mu-tau interchange symmetry, enforcing--at tree level--maximal atmospheric neutrino mixing and a vanishing m
We worked out in detail the three-Higgs-doublet extension of the standard model when the $A_4$ symmetry, which is imposed to solve the flavor problem, is extended to the scalar sector. The three doublets may be related to the fermion mass generation
We construct a three-Higgs doublet model with a flavour non-universal ${rm U}(1)times mathbb{Z}_2$ symmetry. That symmetry induces suppressed flavour-changing interactions mediated by neutral scalars. New scalars with masses below the TeV scale can s