ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective equidistribution and property tau

116   0   0.0 ( 0 )
 نشر من قبل Amir Mohammadi
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a quantitative equidistribution statement for adelic homogeneous subsets whose stabilizer is maximal and semisimple. Fixing the ambient space, the statement is uniform in all parameters. We explain how this implies certain equidistribution theorems which, even in a qualitative form, are not accessible to measure-classification theorems. As another application, we describe another proof of property tau for arithmetic groups.



قيم البحث

اقرأ أيضاً

We prove the equidistribution of subsets of $(Rr/Zz)^n$ defined by fractional parts of subsets of~$(Zz/qZz)^n$ that are constructed using the Chinese Remainder Theorem.
We investigate the equidistribution of Hecke eigenforms on sets that are shrinking towards infinity. We show that at scales finer than the Planck scale they do not equidistribute while at scales more coarse than the Planck scale they equidistribute o n a full density subsequence of eigenforms. On a suitable set of test functions we compute the variance showing interesting transition behavior at half the Planck scale.
62 - Thomas Gauthier 2021
In the present article, we define a notion of good height functions on quasi-projective varieties $V$ defined over number fields and prove an equidistribution theorem of small points for such height functions. Those good height functions are defined as limits of height functions associated with semi-positive adelic metrization on big and nef $mathbb{Q}$-line bundles on projective models of $V$ satisfying mild assumptions. Building on a recent work of the author and Vigny as well as on a classical estimate of Call and Silverman, and inspiring from recent works of Kuhne and Yuan and Zhang, we deduce the equidistribution of generic sequence of preperiodic parameters for families of polarized endomorphisms with marked points.
We prove the first case of polynomially effective equidistribution of closed orbits of semisimple groups with nontrivial centralizer. The proof relies on uniform spectral gap, builds on, and extends work of Einsiedler, Margulis, and Venkatesh.
We provide a new and simple automorphic method using Eisenstein series to study the equidistribution of modular symbols modulo primes, which we apply to prove an average version of a conjecture of Mazur and Rubin. More precisely, we prove that modula r symbols corresponding to a Hecke basis of weight 2 cusp forms are asymptotically jointly equidistributed mod $p$ while we allow restrictions on the location of the cusps. As an application, we obtain a residual equidistribution result for Dedekind sums. Furthermore, we calculate the variance of the distribution and show a surprising bias with connections to perturbation theory. Additionally, we prove the full conjecture in some particular cases using a connection to Eisenstein congruences. Finally, our methods generalise to equidistribution results for cohomology classes of finite volume quotients of $n$-dimensional hyperbolic space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا