ﻻ يوجد ملخص باللغة العربية
We propose a new method of pushing $Herschel$ to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24$mu$m colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected $Herschel$ sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250$mu$m and more than 3 in the 350$mu$m and 500$mu$m bands. We produce realistic mock $Herschel$ images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-$Herschel$ Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a local confusion noise. Two methods are used to identify sources with reliable photometric accuracy extracted using 24$mu$m prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24$mu$m neighbours and the photometric accuracy index (PAI) directly extracted from the mock $Herschel$ images. After correction for completeness, thanks to our mock $Herschel$ images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100$mu$m and 2.2 mJy at 160$mu$m and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250$mu$m, 350$mu$m, and 500$mu$m, respectively. The latter depths improve the detection limits of $Herschel$ by factors of 5 at 250$mu$m, and 3 at 350$mu$m and 500$mu$m as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all $Herschel$ bands appear to be distant siblings of the Milky Way ($z$$sim$0.96 for $lambda$$<$300$mu$m) with a stellar mass of $M_{star}$$sim$9$times$10$^{10}$M$_{odot}$.
The cosmic infrared background (CIB) provides a fundamental observational constraint on the star-formation history of galaxies over cosmic history. We estimate the contribution to the CIB from catalogued galaxies in the COSMOS field by using a novel
We present the deepest far-IR observations obtained with Herschel and examine the 3-500um SEDs of galaxies at 0<z<2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer and AKARI data. We find that the ratio of total IR luminosity to r
Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present infrared galaxy LFs at redshifts redshif
We perform lens modelling and source reconstruction of Submillimeter Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500$mu$m in the Herschel Astrophysical Terahertz Large Area Survey H-ATLAS. A previous analysis of the same
We investigate the multiplicity of extragalactic sources detected by the Herschel Space Observatory in the COSMOS field. Using 3.6- and 24-$mu$m catalogues, in conjunction with 250-$mu$m data from Herschel, we seek to determine if a significant fract