ﻻ يوجد ملخص باللغة العربية
We report a partial-wave analysis of new data on the double-polarization variable $E$ for the reactions $gamma pto pi^+ n$ and $gamma pto pi^0 p$ and of further data published earlier. The analysis within the Bonn-Gatchina (BnGa) formalism reveals evidence for a poorly known baryon resonance, the one-star $Delta(2200)7/2^-$. This is the lowest-mass $Delta^*$ resonance with spin-parity $J^P=7/2^-$. Its mass is significantly higher than the mass of its parity partner $Delta(1950)7/2^+$ which is the lowest-mass $Delta^*$ resonance with spin-parity $J^P=7/2^+$. It has been suggested that chiral symmetry might be restored in the high-mass region of hadron excitations, and that these two resonances should be degenerate in mass. Our findings are in conflict with this prediction.
We report a measurement of a new high spin Jp = 5- state at 22.4(0.2) MeV in 12C which fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D_3h symmetry characterized by the sequence
We study the phase structure of dense hadronic matter including $Delta(1232)$ as well as N(939) based on the parity partner structure, where the baryons have their chiral partners with a certain amount of chiral invariant masses. We show that, in sym
We study chiral symmetry restoration by analyzing thermal properties of QCDs (pseudo-)Goldstone bosons, especially the pion. The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions. To obtain the
Properties of cold nuclear matter are studied within a generalized Nambu-Jona-Lasinio model formulated on the level of constituent nucleons. The model parameters are chosen to reproduce simultaneously the observed nucleon and pion masses in vacuum as
One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$chi$D)