ﻻ يوجد ملخص باللغة العربية
BS Cir is a representative of moderately cool magnetic chemically peculiar stars which displays very strong light variations in Stroemgren index c1 indicating large changes in the height of the Balmer jump. We present two-spot model of light variations fitting successfully all of nine light curves obtained in the spectral region 335-750 nm. We also discuss the nature of the observed variations of intensities of Fe, Cr, Ti, Si, Mg and RE spectral lines and possible mechanisms matching the observed light variations. It was confirmed that the observed period of BS Cir 2.204 d is rising with the rate of dP/dt=5.4(4)x10^-9. The found minor secular changes in the shape of light curve should be compatible with the period changes caused by precessional motion due to magnetic distortion of the star.
In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD207561. During a survey programme to search for new roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant photometric variab
The late-B magnetic chemically peculiar star CU Vir is one of the fastest rotators among the intermediate-mass stars with strong fossil magnetic fields. It shows a prominent rotational modulation of the spectral energy distribution and absorption lin
The Ap star HD3980 appears to be a promising roAp candidate based on its fundamental parameters, leading us to search for rapid pulsations with the VLT UV-Visual Echelle Spectrograph (UVES). A precise Hipparcos parallax and estimated temperature of 8
Context. The detection of planets orbiting chemically peculiar stars is very scarcely known in the literature. Aims. To determine the detailed chemical composition of the remarkable planet host star KELT-17. This object hosts a hot-Jupiter planet wit
Context: Hyper-velocity stars are suggested to originate from the dynamical interaction of binary stars with the supermassive black hole in the Galactic centre (GC), which accelerates one component of the binary to beyond the Galactic escape velocity