ﻻ يوجد ملخص باللغة العربية
We present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable representations (HSS). Such matrices appear in many applications, e.g., finite element methods, boundary element methods, etc. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, relies on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. This work is part of a more global effort, the STRUMPACK (STRUctured Matrices PACKage) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.
We propose several new schedules for Strassen-Winograds matrix multiplication algorithm, they reduce the extra memory allocation requirements by three different means: by introducing a few pre-additions, by overwriting the input matrices, or by using
Hierarchical $mathcal{H}^2$-matrices are asymptotically optimal representations for the discretizations of non-local operators such as those arising in integral equations or from kernel functions. Their $O(N)$ complexity in both memory and operator a
We describe here a rudimentary sage implementation of the Bhattacharya-Mesner hypermatrix algebra package.
Tensors (also commonly seen as multi-linear operators or as multi-dimensional arrays) are ubiquitous in scientific computing and in data science, and so are the software efforts for tensor operations. Particularly in recent years, we have observed an
Distributed matrix computations -- matrix-matrix or matrix-vector multiplications -- are well-recognized to suffer from the problem of stragglers (slow or failed worker nodes). Much of prior work in this area is (i) either sub-optimal in terms of its