ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressive Sensing of Signals Generated in Plastic Scintillators in a Novel J-PET Instrument

159   0   0.0 ( 0 )
 نشر من قبل Michal Silarski
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The dis- cussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sam- pling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iter- ative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples.



قيم البحث

اقرأ أيضاً

The purpose of the presented research is estimation of the performance characteristics of the economic Total-Body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMA NU-2- 2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips (each with cross section of 6 mm times 30 mm and length of 140 cm or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with the diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolutions of 3.7 mm (transversal) and 4.9 mm (axial) are achieved. The NECR peak of 630 kcps is expected at 30 kBq/cc activity concentration and the sensitivity at the center amounts to 38 cps/kBq. The SF is estimated to 36.2 %. The values of SF and spatial resolution are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET. With respect to the standard PET systems with AFOV in the range from 16 cm to 26 cm, the TB-J-PET is characterized by an increase in NECR approximately by factor of 4 and by the increase of the whole-body sensitivity by factor of 12.6 to 38. The TOF resolution for the TB-J-PET is expected to be at the level of CRT=240 ps (FWHM). For the TB-J-PET with an axial field-of-view (AFOV) of 140 cm, an image quality of the reconstructed images of a NEMA IEC phantom was presented with a contrast recovery coefficient (CRC) and a background variability parameters. The increase of the whole-body sensitivity and NECR estimated for the TB-J-PET with respect to current commercial PET systems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners.
Time-Over-Threshold (TOT) technique is being used widely due to its implications in developing the multi channel readouts mainly when fast signal processing is required. Using TOT technique as a measure of energy loss instead of charge integration me thods significantly reduces the signals readout cost by combining the time and energy information. Therefore, this approach can potentially be used in J-PET tomograph which is build from plastic scintillators characterized by fast light signals. The drawback in adopting this technique is lying in the non-linear correlation between input energy loss and TOT of the signal. The main motivation behind this work is to develop the relationship between TOT and energy loss and validate it with the J-PET tomograph. The experiment was performed using the $^{22}$Na beta emitter source placed in the center of the J-PET tomograph. One can obtain primary photons of two different energies: 511 keV photon from the annihilation of positron (direct annihilation or through the formation of para-Positronim atom or pick-off process of ortho-Positronium atoms), and 1275 keV prompt photon. This allows to study the correlation between TOT values and energy loss for energy range up to 1000 keV. As the photon interacts dominantly via Compton scattering inside the plastic scintillator, there is no direct information of primary photon energy. However, using the J-PET geometry one can measure the scattering angle of the interacting photon. Since, $^{22}$Na source emits photons of two different energies, it is required to know unambiguously the energy of incident photons and its corresponding scattering angle for the estimation of energy deposition. In this work, the relationship between Time Over Threshold and energy loss by interacting photons inside the plastic scintillators used in J-PET scanner is established for a energy deposited range 100-1000 keV
For the first time a molecule of 2-(4-styrylphenyl)benzoxazole containing benzoxazole and stilbene groups is applied as a scintillator dopant acting as a wavelength shifter. In this article a light yield of the plastic scintillator, prepared from sty rene doped with 2 wt% of 2,5-diphenylbenzoxazole and 0.03 wt% of 2-(4-styrylphenyl)benzoxazole, is determined to be as large as 60% $pm$ 2% of the anthracene light output. There is a potential to improve this value in the future by the optimization of the additives concentrations.
Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which w ould allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511~keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps
The polystyrene dopped with 2,5-diphenyloxazole as a primary fluor and 2-(4-styrylphenyl)benzoxazole as a wavelength shifter, prepared as a plastic scintillator was investigated using positronium probe in wide range of temperatures from 123 to 423 K. Three structural transitions at 260 K, 283 K and 370 K were found in the material. In the o-Ps intensity dependence on temperature, the significant hysteresis is observed. Heated to 370 K, the material exhibits the o-Ps intensity variations in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا