ترغب بنشر مسار تعليمي؟ اضغط هنا

Results and prospects on registration of reflected Cherenkov light of EAS from cosmic particles above 10^{15} eV

117   0   0.0 ( 0 )
 نشر من قبل Timur Dzhatdoev
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an overview of the SPHERE experiment based on detection of reflected Vavilov-Cherenkov radiation (Cherenkov light) from extensive air showers in the energy region E>10^{15} eV. A brief history of the reflected Cherenkov light technique is given; the observations carried out with the SPHERE-2 detector are summarized; the methods of the experimental datasample analysis are described. The first results on the primary cosmic ray all-nuclei energy spectrum and mass composition are presented. Finally, the prospects of the SPHERE experiment and the reflected Cherenkov light technique are given.



قيم البحث

اقرأ أيضاً

Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the knee of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
181 - N. M. Budnev 2005
We present results of an improved analysis of the experimental data of the EAS Cherenkov array Tunka-25. A new function to fit the Cherenkov light lateral distribution LDF at core distances from 0 to 350 m has been developed on the base of CORSIKA si mulations and applied to the analysis of Tunka data. Two methods to estimate the EAS maximum position have been used. The one is based on the pulse FWHM, the other on the light LDF. We present the primary energy spectrum in the energy range 10^15 - 10^17 eV. The use of the depth of the EAS maximum to determine the mean mass composition is discussed.
A compact device lifted over the ground surface might be used to observe optical radiation of extensive air showers (EAS). Here we consider spatial and temporal characteristics of Vavilov-Cherenkov radiation (Cherenkov light) reflected from the snow surface of Lake Baikal, as registered by the SPHERE-2 detector. We perform detailed full direct Monte Carlo simulations of EAS development and present a dedicated highly modular code intended for detector response simulations. Detector response properties are illustrated by example of several model EAS events. The instrumental acceptance of the SPHERE-2 detector was calculated for a range of observation conditions. We introduce the concept of composite model quantities, calculated for detector responses averaged over photoelectron count fluctuations, but retaining EAS development fluctuations. The distortions of EAS Cherenkov light lateral distribution function (LDF) introduced by the SPHERE-2 telescope are understood by comparing composite model LDF with the corresponding function as would be recorded by an ideal detector situated at the ground surface. We show that the uncertainty of snow optical properties does not change our conclusions, and, moreover, that the expected performance of the SPHERE experiment in the task of cosmic ray mass composition study in the energy region $sim$10 PeV is comparable with other contemporary experiments. Finally, we compare the reflected Cherenkov light method with other experimental techniques and briefly discuss its prospects.
The aim of the Yakutsk array enhancement project is to create an instrument to study the highest-energy galactic cosmic rays (CRs) -- their sources, energy spectrum, and mass composition. Additionally, there will be unique capabilities for investigat ions in the transition region between galactic and extragalactic components of CRs. Using the well-developed imaging atmospheric Cherenkov telescope technique adapted to the energy region $E>10^{15}$ eV, we plan to measure the longitudinal structure parameters of the shower, e.g., angular and temporal distributions of the Cherenkov signal related to $X_{max}$ and the mass composition of CRs. The main advantages of the Yakutsk array, such as its multi-component measurements of extensive air showers, and model-independent CR energy estimation based on Cherenkov light measurements, will be inherited by the instrument to be created.
Results of the search for $sim (10^{16} - 10^{17.5})$ eV primary cosmic-ray photons with the data of the Moscow State University (MSU) Extensive Air Shower (EAS) array are reported. The full-scale reanalysis of the data with modern simulations of the installation does not confirm previous indications of the excess of gamma-ray candidate events. Upper limits on the corresponding gamma-ray flux are presented. The limits are the most stringent published ones at energies $sim 10^{17}$ eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا