ﻻ يوجد ملخص باللغة العربية
We simulated the growth of 2D islands with 2 kinds of diffusion atoms using the kinetic Monte- Carlo (kMC) method. As a result, we found that the slow atoms tend to create nuclei and determine the island volume distribution, along with additional properties such as island density. We also conducted a theoretical analysis using the rate equation of the point-island model to confirm these results.
Versatile quantum modes emerge for plasmon describing the collective oscillations of free electrons in metallic nanoparticles when the particle sizes are greatly reduced. Rather than traditional nanoscale study, the understanding of quantum plasmon d
The graphene islands, formed as different sizes, are crucial for the final quality of the formed graphene during the CVD growth either as the nucleation seeds or as the build blocks for larger graphene domains. Extensive efforts had been devoted to t
We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH ($X,^2Pi_{3/2}, J=3/2, f$) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D$_2$ as a function of the collision energy between $sim 7
It is well known that water inside hydrophobic nano-channels diffuses faster than bulk water. Recent theoretical studies have shown that this enhancement depends on the size of the hydrophobic nanochannels. However, experimental evidence of this depe
We outline a method to slow paramagnetic atoms or molecules using pulsed magnetic fields. We also discuss the possibility of producing trapped particles by adiabatic deceleration of a magnetic trap. We present numerical simulation results for the slowing and trapping of molecular oxygen.