ترغب بنشر مسار تعليمي؟ اضغط هنا

Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom

149   0   0.0 ( 0 )
 نشر من قبل Jinxin Xue
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper Arnold diffusion is proved to be a generic phenomenon in nearly integrable convex Hamiltonian systems with arbitrarily many degrees of freedom: $$ H(x,y)=h(y)+eps P(x,y), qquad xinmathbb{T}^n, yinmathbb{R}^n,quad ngeq 3. $$ Under typical perturbation $eps P$, the system admits connecting orbit that passes through any finitely many prescribed small balls in the same energy level $H^{-1}(E)$ provided $E>min h$.



قيم البحث

اقرأ أيضاً

M. Kruskal showed that each nearly-periodic dynamical system admits a formal $U(1)$ symmetry, generated by the so-called roto-rate. We prove that such systems also admit nearly-invariant manifolds of each order, near which rapid oscillations are supp ressed. We study the nonlinear normal stability of these slow manifolds for nearly-periodic Hamiltonian systems on barely symplectic manifolds -- manifolds equipped with closed, non-degenerate $2$-forms that may be degenerate to leading order. In particular, we establish a sufficient condition for long-term normal stability based on second derivatives of the well-known adiabatic invariant. We use these results to investigate the problem of embedding guiding center dynamics of a magnetized charged particle as a slow manifold in a nearly-periodic system. We prove that one previous embedding, and two new embeddings enjoy long-term normal stability, and thereby strengthen the theoretical justification for these models.
Consider billiard dynamics in a strictly convex domain, and consider a trajectory that begins with the velocity vector making a small positive angle with the boundary. Lazutkin proved that in two dimensions, it is impossible for this angle to tend to zero along trajectories. We prove that such trajectories can exist in higher dimensions. Namely, using the geometric techniques of Arnold diffusion, we show that in three or more dimensions, assuming the geodesic flow on the boundary of the domain has a hyperbolic periodic orbit and a transverse homoclinic, the existence of trajectories asymptotically approaching the billiard boundary is a generic phenomenon in the real-analytic topology.
We construct solutions of analogues of the nonstationary Schrodinger equation corresponding to the polynomial isomonodromic Hamiltonian Garnier system with two degrees of freedom. This solutions are obtained from solutions of systems of linear ordina ry differential equations whose compatibility condition is the Garnier system. This solutions upto explicit transform also satisfy the Belavin --- Polyakov --- Zamolodchikov equations with four time variables and two space variables.
We study the behavior of a moving wall in contact with a particle gas and subjected to an external force. We compare the fluctuations of the system observed in the microcanonical and canonical ensembles, at varying the number of particles. Static and dynamic correlations signal significant differences between the two ensembles. Furthermore, velocity-velocity correlations of the moving wall present a complex two-time relaxation which cannot be reproduced by a standard Langevin-like description. Quite remarkably, increasing the number of gas particles in an elongated geometry, we find a typical timescale, related to the interaction between the partitioning wall and the particles, which grows macroscopically.
We present the capability of Lagrangian descriptors for revealing the high dimensional phase space structures that are of interest in nonlinear Hamiltonian systems with index-1 saddle. These phase space structures include normally hyperbolic invarian t manifolds and their stable and unstable manifolds, and act as codimenision-1 barriers to phase space transport. The method is applied to classical two and three degrees-of-freedom Hamiltonian systems which have implications for myriad applications in physics and chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا