ترغب بنشر مسار تعليمي؟ اضغط هنا

The incidence of magnetic fields in cool DZ white dwarfs

381   0   0.0 ( 0 )
 نشر من قبل Mark Hollands
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Little is known about the incidence of magnetic fields among the coolest white dwarfs. Their spectra usually do not exhibit any absorption lines as the bound-bound opacities of hydrogen and helium are vanishingly small. Probing these stars for the presence of magnetic fields is therefore extremely challenging. However, external pollution of a cool white dwarf by, e.g., planetary debris, leads to the appearance of metal lines in its spectral energy distribution. These lines provide a unique tool to identify and measure magnetism in the coolest and oldest white dwarfs in the Galaxy. We report the identification of 7 strongly metal polluted, cool (T_eff < 8000 K) white dwarfs with magnetic field strengths ranging from 1.9 to 9.6 MG. An analysis of our larger magnitude-limited sample of cool DZ yields a lower limit on the magnetic incidence of 13+/-4 percent, noticeably much higher than among hot DA white dwarfs.



قيم البحث

اقرأ أيضاً

White dwarfs with metal lines in their spectra act as signposts for post-main sequence planetary systems. Searching the Sloan Digital Sky Survey (SDSS) data release 12, we have identified 231 cool (<9000 K) DZ white dwarfs with strong metal absorptio n, extending the DZ cooling sequence to both higher metal abundances, lower temperatures, and hence longer cooler ages. Of these 231 systems, 104 are previously unknown white dwarfs. Compared with previous work, our spectral fitting uses improved model atmospheres with updated line profiles and line-lists, which we use to derive effective temperatures and abundances for up to 8 elements. We also determine spectroscopic distances to our sample, identifying two halo-members with tangential space-velocities >300 kms-1. The implications of our results on remnant planetary systems are to be discussed in a separate paper.
We present an analysis of photometric, spectroscopic and spectropolarimetric data of the nearby, cool, magnetic DZ white dwarf PM J08186-3110. High dispersion spectra show the presence of Zeeman splitted spectral lines due to the presence of a surfac e average magnetic field of 92 kG. The strong magnesium and calcium lines show extended wings shaped by interactions with neutral helium in a dense, cool helium-rich atmosphere. We found that the abundance of heavy elements varied between spectra taken ten years apart but we could not establish a time-scale for these variations; such variations may be linked to surface abundance variations in the magnetized atmosphere. Finally, we show that volume limited samples reveal that about 40% of DZ white dwarfs with effective temperatures below 7000 K are magnetic.
In a previous study, we analysed the spectra of 230 cool ($T_mathrm{eff}$ < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here we interpret these abundances in ter ms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSSJ0823+0546 and SDSSJ0741+3146, which show log[Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by 3 orders of magnitude over a $simeq$6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a $simeq$1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.
We report the discovery of weak magnetic fields in three white dwarfs within the local 20pc volume (WD 0816-310, WD 1009-184, and WD 1532+129), and we confirm the magnetic nature of a fourth star (WD 2138-332) in which we had previously detected a fi eld at a 3 sigma level. The spectra of all these white dwarfs are characterised by the presence of metal lines and lack of H and He lines, that is, they belong to the spectral class DZ. The polarisation signal of the Ca II H+K lines of WD 1009-184 is particularly spectacular, with an amplitude of 20% that is due to the presence of a magnetic field with an average line-of-sight component of 40kG. We have thus established that at least 40% of the known DZ white dwarfs with an He-rich atmosphere contained in the 20pc volume have a magnetic field, while further observations are needed to establish whether the remaining DZ white dwarfs in the same volume are magnetic or not. Metal lines in the spectra of DZ white dwarfs are thought to have originated by accretion from rocky debris, and it might be argued that a link exists between metal accretion and higher occurrence of magnetism. However, we are not able to distinguish whether the magnetic field and the presence of a polluted atmosphere have a common origin, or if it is the presence of metal lines that allows us to detect a higher frequency of magnetic fields in cool white dwarfs, which would otherwise have featureless spectra. We argue that the new highly sensitive longitudinal field measurements that we have made in recent years are consistent with the idea that the magnetic field appears more frequently in older than in younger white dwarfs.
The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present p opulation synthesis calculations showing that this hypothesis is supported by observations of magnetic binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا