ترغب بنشر مسار تعليمي؟ اضغط هنا

An extension of the projected gradient method to a Banach space setting with application in structural topology optimization

177   0   0.0 ( 0 )
 نشر من قبل Christoph Rupprecht
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For the minimization of a nonlinear cost functional $j$ under convex constraints the relaxed projected gradient process $varphi_{k+1} = varphi_{k} + alpha_k(P_H(varphi_{k}-lambda_k abla_H j(varphi_{k}))-varphi_{k})$ is a well known method. The analysis is classically performed in a Hilbert space $H$. We generalize this method to functionals $j$ which are differentiable in a Banach space. Thus it is possible to perform e.g. an $L^2$ gradient method if $j$ is only differentiable in $L^infty$. We show global convergence using Armijo backtracking in $alpha_k$ and allow the inner product and the scaling $lambda_k$ to change in every iteration. As application we present a structural topology optimization problem based on a phase field model, where the reduced cost functional $j$ is differentiable in $H^1cap L^infty$. The presented numerical results using the $H^1$ inner product and a pointwise chosen metric including second order information show the expected mesh independency in the iteration numbers. The latter yields an additional, drastic decrease in iteration numbers as well as in computation time. Moreover we present numerical results using a BFGS update of the $H^1$ inner product for further optimization problems based on phase field models.



قيم البحث

اقرأ أيضاً

86 - Zhi Zeng , Fulei Ma 2020
This paper presents an efficient gradient projection-based method for structural topological optimization problems characterized by a nonlinear objective function which is minimized over a feasible region defined by bilateral bounds and a single line ar equality constraint. The specialty of the constraints type, as well as heuristic engineering experiences are exploited to improve the scaling scheme, projection, and searching step. In detail, gradient clipping and a modified projection of searching direction under certain condition are utilized to facilitate the efficiency of the proposed method. Besides, an analytical solution is proposed to approximate this projection with negligible computation and memory costs. Furthermore, the calculation of searching steps is largely simplified. Benchmark problems, including the MBB, the force inverter mechanism, and the 3D cantilever beam are used to validate the effectiveness of the method. The proposed method is implemented in MATLAB which is open-sourced for educational usage.
Conic optimization is the minimization of a differentiable convex objective function subject to conic constraints. We propose a novel primal-dual first-order method for conic optimization, named proportional-integral projected gradient method (PIPG). PIPG ensures that both the primal-dual gap and the constraint violation converge to zero at the rate of (O(1/k)), where (k) is the number of iterations. If the objective function is strongly convex, PIPG improves the convergence rate of the primal-dual gap to (O(1/k^2)). Further, unlike any existing first-order methods, PIPG also improves the convergence rate of the constraint violation to (O(1/k^3)). We demonstrate the application of PIPG in constrained optimal control problems.
52 - Ewout van den Berg 2016
We propose a new algorithm for the optimization of convex functions over a polyhedral set in Rn. The algorithm extends the spectral projected-gradient method with limited-memory BFGS iterates restricted to the present face whenever possible. We prove convergence of the algorithm under suitable conditions and apply the algorithm to solve the Lasso problem, and consequently, the basis-pursuit denoise problem through the root-finding framework proposed by van den Berg and Friedlander [SIAM Journal on Scientific Computing, 31(2), 2008]. The algorithm is especially well suited to simple domains and could also be used to solve bound-constrained problems as well as problems restricted to the simplex.
83 - Yue Yu , Ufuk Topcu 2021
A constrained optimization problem is primal infeasible if its constraints cannot be satisfied, and dual infeasible if the constraints of its dual problem cannot be satisfied. We propose a novel iterative method, named proportional-integral projected gradient method (PIPG), for detecting primal and dual infeasiblity in convex optimization with quadratic objective function and conic constraints. The iterates of PIPG either asymptotically provide a proof of primal or dual infeasibility, or asymptotically satisfy a set of primal-dual optimality conditions. Unlike existing methods, PIPG does not compute matrix inverse, which makes it better suited for large-scale and real-time applications. We demonstrate the application of PIPG in quasiconvex and mixed-integer optimization using examples in constrained optimal control.
Many social phenomena are triggered by public opinion that is formed in the process of opinion exchange among individuals. To date, from the engineering point of view, a large body of work has been devoted to studying how to manipulate individual opi nions so as to guide public opinion towards the desired state. Recently, Abebe et al. (KDD 2018) have initiated the study of the impact of interventions at the level of susceptibility rather than the interventions that directly modify individual opinions themselves. For the model, Chan et al. (The Web Conference 2019) designed a local search algorithm to find an optimal solution in polynomial time. However, it can be seen that the solution obtained by solving the above model might not be implemented in real-world scenarios. In fact, as we do not consider the amount of changes of the susceptibility, it would be too costly to change the susceptibility values for agents based on the solution. In this paper, we study an opinion optimization model that is able to limit the amount of changes of the susceptibility in various forms. First we introduce a novel opinion optimization model, where the initial susceptibility values are given as additional input and the feasible region is defined using the $ell_p$-ball centered at the initial susceptibility vector. For the proposed model, we design a projected gradient method that is applicable to the case where there are millions of agents. Finally we conduct thorough experiments using a variety of real-world social networks and demonstrate that the proposed algorithm outperforms baseline methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا