ﻻ يوجد ملخص باللغة العربية
In this paper we define a quantization of the Double Ramification Hierarchies of [Bur15b] and [BR14], using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new $(1+1)$-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.
We propose a remarkably simple and explicit conjectural formula for a bihamiltonian structure of the double ramification hierarchy corresponding to an arbitrary homogeneous cohomological field theory. Various checks are presented to support the conjecture.
Let X be a nonsingular projective algebraic variety, and let S be a line bundle on X. Let A = (a_1,..., a_n) be a vector of integers. Consider a map f from a pointed curve (C,x_1,...,x_n) to X satisfying the following condition: the line bundle f*(S)
We study the most general form of a three dimensional classical integrable system with axial symmetry and invariant under the axis reflection. We assume that the three constants of motion are the Hamiltonian, $H$, with the standard form of a kinetic
Resonant systems emerge as weakly nonlinear approximations to problems with highly resonant linearized perturbations. Examples include nonlinear Schroedinger equations in harmonic potentials and nonlinear dynamics in Anti-de Sitter spacetime. The cla
Curves of genus g which admit a map to CP1 with specified ramification profile mu over 0 and nu over infinity define a double ramification cycle DR_g(mu,nu) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of