ترغب بنشر مسار تعليمي؟ اضغط هنا

The Influence of Filaments in the Private Flux Region on Divertor Particle and Power Deposition

96   0   0.0 ( 0 )
 نشر من قبل James Harrison
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transport of particles via intermittent filamentary structures in the private flux region of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggests that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the private flux region (PFR) of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1-2cm in diameter. The most probable toroidal mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a speed of 0.5-1.0km/s. Probe measurements at the inner divertor target suggest that the fluctuations in the particle flux to the inner target are strongest in the private flux region, and that the amplitude and distribution of these fluctuations are insensitive to the electron density of the core plasma, auxiliary heating and whether the plasma is single-null or double-null. It is found that the e-folding width of the time-average particle flux in the PFR decreases with increasing plasma current, but the fluctuations are unchanged. At the outer divertor target, the fluctuations in particle and power fluxes are strongest in the SOL.



قيم البحث

اقرأ أيضاً

A complete global balance for carbon in JET requires knowledge of the net erosion in the main chamber, net deposition in the divertor and the amount of dust and flakes collecting in the divertor region. This paper describes a number of measurements o n aspects of this global picture. Profiler measurements and cross section microscopy on tiles that were removed in the 2009 JET intervention are used to evaluate the net erosion in the main chamber and net deposition in the divertor. In addition the mass of dust and flakes collected from the JET divertor during the same intervention is also reported and included as part of the balance. Spectroscopic measurements of carbon erosion from the main chamber are presented and compared with the erosion measurements for the main chamber.
The spatial distribution of magnetic fields that are generated by the electromagnetic flux compression technique is investigated, with emphasis on the dynamical processes of an imploding liner. By comparing with the results of computer simulations, w e found that the non-uniform implosion of a liner is important in order to explain the magnetic fields distribution during the liners implosion. In addition, our results suggest that the initial inwards compressing spool-like motion of the liner subsequently turns out to be outwards stretching barrel-like motion along the magnetic field axis.
The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density and plasma current (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1m2/s to 7m2/s, and is systematically lower in H-mode compared with L-mode.
This work investigates the use of pulse stretching inverters for monitoring the variation of flux and Linear Energy Transfer (LET) of energetic particles. The basic particle detector consists of two cascaded pulse stretching (skew-sized) inverters de signed in CMOS technology, and the required sensing area is obtained by connecting multiple two-inverter pulse stretching cells in parallel, and employing the required number of parallel arrays. The particle strikes are detected in terms of the Single Event Transients (SETs), and the detector provides the information on the SET count rate and SET pulse width variation, from which the particle flux and LET can be determined. The main advantage of the proposed solution is the possibility to sense the LET variations using purely digital processing logic. The SPICE simulations done on IHP 130 nm bulk CMOS technology have shown that the SET pulse width at the output of detector changes by 550 ps over the LET range from 1 to 100 MeVcm2mg-1. The proposed solution is intended to operate as an on-chip particle detector within the self-adaptive multiprocessing systems.
101 - Maxim Lyutikov 2018
Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically-dominated plasma. Mergers of current-carrying flux tubes (exempli fied by the two dimensional `ABC structures) and zero total current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization $sigma$. For plasma magnetization $sigma leq 10^2$ the spectrum power law index is $p> 2$; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, $sigma geq 10^2$, the spectra are hard, $p< 2$, yet the maximal energy $gamma_{max}$ can still exceed the average magnetic energy per particle, $ sim sigma$, by orders of magnitude (if $p$ is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا