ترغب بنشر مسار تعليمي؟ اضغط هنا

The ISM at high redshifts: ALMA results and a look to the future

47   0   0.0 ( 0 )
 نشر من قبل Andrew Blain
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew W. Blain




اسأل ChatGPT حول البحث

ALMA is revolutionizing the way we study and understand the astrophysics of galaxies, both as a whole and individually. By exploiting its unique sensitivity and resolution to make spatially and spectrally resolved images of the gas and dust in the interstellar medium (ISM), ALMA can reveal new information about the relationship between stars and gas, during and between galaxies cycles of star formation and AGN fueling. However, this can only be done for a modest number of targets, and thus works in the context of large samples drawn from other surveys, while providing parallel deep imaging in small fields around. Recent ALMA highlights are reviewed, and some areas where ALMA will potentially make great contributions in future are discussed.

قيم البحث

اقرأ أيضاً

We present an overview of high resolution quiet Sun observations, from disk center to the limb, obtained with the Atacama Large mm and sub-mm Array (ALMA) at 3 mm. Seven quiet Sun regions were observed with resolution of up to 2.5 by 4.5. We produced both average and snapshot images by self-calibrating the ALMA visibilities and combining the interferometric images with full disk solar images. The images show well the chromospheric network, which, based on the unique segregation method we used, is brighter than the average over the fields of view of the observed regions by $sim 305$ K while the intranetwork is less bright by $sim 280$ K, with a slight decrease of the network/intranetwork contrast toward the limb. At 3 mm the network is very similar to the 1600 AA images, with somewhat larger size. We detected for the first time spicular structures, rising up to 15 above the limb with a width down to the image resolution and brightness temperature of $sim$ 1800 K above the local background. No trace of spicules, either in emission or absorption, was found on the disk. Our results highlight ALMAs potential for the study of the quiet chromosphere.
139 - N. Scoville , H. Aussel , K. Sheth 2014
The use of submm dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star forming galaxies, Planck observations of the Milky Way and high redshift submm galaxies (SMGs). All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans (RJ) tail of the dust emission can be used as an accurate and very fast probe of the ISM in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar mass-selected from COSMOS to have $M_* simeq10^{11}$msun: 37 at z$sim0.4$, 33 at z$sim0.9$ and 31 at z$=2$. A fourth sample with 6 IR luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased a factor $sim 6$ from $1 - 2 times 10^{10}$msun at both z = 2 and 0.9 down to $sim 2 times 10^9$msun at z = 0.4. The IR luminous sample at z = 2 shows a further $sim 4$ times increase in M$_{ISM}$ compared to the equivalent non-IR bright sample at the same redshift. The gas mass fractions are $sim 2pm0.5, 12pm3, 14pm2 ~rm{and} ~53pm3$ $%$ for the four subsamples (z = 0.4, 0.9, 2 and IR bright galaxies).
The thermal history of cosmic gas in the Dark Ages remains largely unknown. It is important to quantify the impact of relevant physics on the IGM temperature between $z=10$ and $z sim 30$, in order to interpret recent and oncoming observations, inclu ding results reported by EDGES. We revisit the gas heating due to structure formation shocks in this era, using a set of fixed grid cosmological hydrodynamical simulations performed by three different codes. In all our simulations, the cosmic gas is predicted to be in multiphase state since $z>30$. The gas surrounding high density peaks gradually develops a relation more sharp than $T propto rho^{2/3}$, approximately $T propto rho^{2}$, from $z=30$ to $z=11$, might due to shock heating. Meanwhile, the gas in void region tends to have a large local mach number, and their thermal state varies significantly from code to code. In the redshift range $11-20$, the mass fraction of gas shock heated above the CMB temperature in our simulations is larger than previous semi-analytical results by a factor of 2 to 8. At $z=15$, the fraction varies from $sim 19%$ to $52 %$ among different codes. Between $z=11$ and $z=20$, the gas temperature $<1/T_{rm{K}}>_M^{-1}$ is predicted to be $sim 10-20$ K by two codes, much higher than the adiabatic cooling model and some previous works. However, in our simulations performed by RAMSES, $<1/T_{rm{K}}>_M^{-1}$ is predicted to be even below the temperature required to explain result of the EDGES. Given the fact that different codes give different predictions, currently, it seems a challenge to make solid prediction on the temperature of gas at $z sim 17$ in simulations.
285 - Paolo Tozzi 2013
Clusters of galaxies at high redshift (z>1) are vitally important to understand the evolution of the large scale structure of the Universe, the processes shaping galaxy populations and the cycle of the cosmic baryons, and to constrain cosmological pa rameters. After 13 years of operation of the Chandra and XMM-Newton satellites, the discovery and characterization of distant X-ray clusters is proceeding at a slow pace, due to the low solid angle covered so far, and the time-expensive observations needed to physically characterize their intracluster medium (ICM). At present, we know that at z>1 many massive clusters are fully virialized, their ICM is already enriched with metals, strong cool cores are already in place, and significant star formation is ongoing in their most massive galaxies, at least at z>1.4. Clearly, the assembly of a large and well characterized sample of high-z X-ray clusters is a major goal for the future. We argue that the only means to achieve this is a survey-optimized X-ray mission capable of offering large solid angle, high sensitivity, good spectral coverage, low background and angular resolution as good as 5 arcsec.
The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z<2) cluster, (z<4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-$lambda$ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z>1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا