ترغب بنشر مسار تعليمي؟ اضغط هنا

NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore

227   0   0.0 ( 0 )
 نشر من قبل Mikhail Yurischev
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.A. Yurischev




اسأل ChatGPT حول البحث

A local orthogonal transformation that transforms any centrosymmetric (CS) matrix of fourth order to the X form is found. A picewise-analytic-numerical formula Q=min{Q_pi/2,Q_theta,Q_0}, where Q_pi/2 and Q_0 are analytical expressions and the branch Q_{theta} is found by numerical searching the optimal measurement angle thetain(0,pi/2), is proposed to calculate the quantum discord Q of general X state. The developed approaches are applied to a quantitative description of recently predicted flickerings (periodic birth and death) of the quantum-information pair correlation between nuclear 1/2 spin of atoms or molecules of a gas (for examples Xe^129) in a finite asymmetric volume in the presence of a strong magnetic field.


قيم البحث

اقرأ أيضاً

Ensembles of alkali or noble-gas atoms at room temperature and above are widely applied in quantum optics and metrology owing to their long-lived spins. Their collective spin states maintain nonclassical nonlocal correlations, despite the atomic ther mal motion in the bulk and at the boundaries. Here we present a stochastic, fully-quantum description of the effect of atomic diffusion in these systems. We employ the Bloch-Heisenberg-Langevin formalism to account for the quantum noise originating from diffusion and from various boundary conditions corresponding to typical wall coatings, thus modeling the dynamics of nonclassical spin states with spatial inter-atomic correlations. As examples, we apply the model to calculate spin noise spectroscopy, temporal relaxation of squeezed spin states, and the coherent coupling between two spin species in a hybrid system.
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.
Non-classical correlations play a crucial role in the development of quantum information science. The recent discovery that non-classical correlations can be present even in separable (unentangled) states has broadened this scenario. This generalized quantum correlation has been increasing relevance in several fields, among them quantum communication, quantum computation, quantum phase transitions, and biological systems. We demonstrate here the occurrence of the sudden-change phenomenon and immunity against some sources of noise for the quantum discord and its classical counterpart, in a room temperature nuclear magnetic resonance setup. The experiment is performed in a decohering environment causing loss of phase relations among the energy eigenstates and exchange of energy between system and environment, resulting in relaxation to a Gibbs ensemble.
Dymanics of spin dimers in multiple quantum NMR experiment is studied on the 5-qubit superconducting quantum processor of IBM {Quantum Experience} for the both {pure} ground and thermodynamic equilibrium (mixed) initial states. The work can be consid ered as a first step towards an application of quantum computers to solving problems of magnetic resonance. This article is dedicated to Prof. Klaus Mobius and Prof. Kev Salikhov on the occasion of their 85th birthdays.
A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we simplify considerably the optimization procedure so that numerical evaluation can be performed efficiently. Analytic al expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There is certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا