ﻻ يوجد ملخص باللغة العربية
We assemble a sample of 24 hydrogen-poor super-luminous supernovae (SLSNe). Parameterizing the light curve shape through rise and decline timescales shows that the two are highly correlated. Magnetar-powered models can reproduce the correlation, with the diversity in rise and decline rates driven by the diffusion timescale. Circumstellar interaction models can exhibit a similar rise-decline relation, but only for a narrow range of densities, which may be problematic for these models. We find that SLSNe are approximately 3.5 magnitudes brighter and have light curves 3 times broader than SNe Ibc, but that the intrinsic shapes are similar. There are a number of SLSNe with particularly broad light curves, possibly indicating two progenitor channels, but statistical tests do not cleanly separate two populations. The general spectral evolution is also presented. Velocities measured from Fe II are similar for SLSNe and SNe Ibc, suggesting that diffusion time differences are dominated by mass or opacity. Flat velocity evolution in most SLSNe suggests a dense shell of ejecta. If opacities in SLSNe are similar to other SNe Ibc, the average ejected mass is higher by a factor 2-3. Assuming $kappa=0.1,$cm$^2,$g$^{-1}$, we estimate a mean (median) SLSN ejecta mass of 10$,$M$_odot$ (6$,$M$_odot$), with a range of 3-30$,$M$_odot$. Doubling the assumed opacity brings the masses closer to normal SNe Ibc, but with a high-mass tail. The most probable mechanism for generating SLSNe seems to be the core-collapse of a very massive hydrogen-poor star, forming a millisecond magnetar.
There is compelling evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Ye at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that oc
We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days late
Over the last 15 years, the supernova community has endeavoured to identify progenitor stars of core-collapse supernovae in high resolution archival images of their galaxies.This review compiles results (from 1999 - 2013) in a distance limited sample
We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events in this capacity, many fundament