ﻻ يوجد ملخص باللغة العربية
Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial High foot heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.
Precise delivery of mass to burning plasmas is a problem of growing interest in magnetic fusion. The answers to how much mass is necessary and sufficient can vary depending on parameters such as the type of atoms involved, the type of applications, p
In inertial confinement fusion, the scientific issues include the generation and transport of driver energy, the pellet design, the uniform target implosion physics, the realistic nuclear fusion reactor design, etc. In this paper, we present a pellet
To enhance the core heating efficiency in fast ignition laser fusion, the concept of relativistic electron beam guiding by external magnetic fields was evaluated by integrated simulations for FIREX class targets. For the cone-attached shell target ca
The proposed fast ignition of highly compressed deuterium-tritium (DT) targets by petawatt lasers requires energy of about 100kJ. To lower the power of the laser, it is proposed to accomplish fast ignition with two lasers, one with lower power in the
A novel capsule target design to improve the hot-spot pressure in the high-adiabat implosion for inertial confinement fusion is proposed, where a layer of comparatively high-density material is used as a pusher between the fuel and the ablator. This