ﻻ يوجد ملخص باللغة العربية
The scattering amplitude from a set of discrete states coupled to a continuum became known as the Fano profile, characteristic for its asymmetric lineshape and originally investigated in the context of photoionization. The generality of the model, and the proliferation of engineered nanostructures with confined states gives immense success to the Fano lineshape, which is invoked whenever an asymmetric lineshape is encountered. However, many of these systems do not conform to the initial model worked out by Fano in that i) they are subject to dissipative processes and ii) the observables are not entirely analogous to the ones measured in the original photoionization experiments. In this letter, we work out the full optical response of a Fano model with dissipation. We find that the exact result for absorption, Raman, Rayleigh and fluorescence emission is a modified Fano profile where the typical lineshape has an additional Lorentzian contribution. Expressions to extract model parameters from a set of relevant observables are given.
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relativel
The effect of PT-symmetry breaking in coupled systems with balanced gain and loss has recently attracted considerable attention and has been demonstrated in various photonic, electrical and mechanical systems in the classical regime. Here we generali
Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems is less thoroughly understood, in part due to the richer
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open
We obtain an explicit solution for the stationary state populations of a dissipative Fano model, where a discrete excited state is coupled to a continumm set of states; both excited set of states are reachable by photo-excitation from the ground stat