ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength

41   0   0.0 ( 0 )
 نشر من قبل Yoshiaki Tsujimoto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780~nm and 1551~nm by spontaneous parametric down-conversion and distributed the two photons at 1551~nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 $pm$ 0.07 which clearly shows the recovery of entanglement.

قيم البحث

اقرأ أيضاً

We report the realization of a fiber coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated on periodically poled lithium niobate. By taking advantage of a dedicated and high-per formance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for the two sets of measurements, interference net visibilities reaching nearly 100%, which represent important and competitive results compared to similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.
Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within the fiber, but also to a drastic enhancement of the chirality in the photon emission. We show that near-perfect chirality is already achieved for moderately-sized ensembles, containing 10 to 15 atoms. This is of importance for developing an efficient interface between atoms and waveguide structures with unidirectional coupling, with applications in quantum computing and communication such as the development of non-reciprocal photon devices or quantum information transfer channels.
77 - A. Gilchrist , K. J. Resch , 2006
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge red entangled photon pairs[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
Quantum blockade and entanglement play important roles in quantum information and quantum communication as quantum blockade is an effective mechanism to generate single photons (phonons) and entanglement is a crucial resource for quantum information processing. In this work, we propose a method to generate single entangled photon-phonon pairs in a hybrid optomechanical system. We show that photon blockade, phonon blockade, and photon-phonon correlation and entanglement can be observed via the atom-photon-phonon (tripartite) interaction, under the resonant atomic driving. The correlated and entangled single photons and single phonons, i.e., single entangled photon-phonon pairs, can be generated in both the weak and strong tripartite interaction regimes. Our results may have important applications in the development of highly complex quantum networks.
We introduce a scalable photonic platform that enables efficient generation of entangled photon pairs from a semiconductor quantum dot. Our system, which is based on a self-aligned quantum dot-micro-cavity structure, erases the need for complex steps of lithography and nanofabrication. We experimentally show collection efficiency of 0.17 combined with a Purcell enhancement of up to 1.7 in the pair emission process. We harness the potential of our device to generate photon pairs entangled in time bin, reaching a fidelity of 0.84(5) with the maximally entangled state. The achieved pair collection efficiency is 4 times larger than the state-of-the art. The device, which theoretically supports pair extraction efficiencies of nearly 0.5 is a promising candidate for the implementation of bright sources of time-bin, polarization- and hyper entangled photon pairs in a straightforward manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا