ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Partial Ionization Effects in the Chromosphere

267   0   0.0 ( 0 )
 نشر من قبل Juan Mart\\'inez-Sykora
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy for the coronal heating must be provided from the convection zone. The amount and the method by which this energy is transferred into the corona depends on the properties of the lower atmosphere and the corona itself. We review: 1) how the energy could be built in the lower solar atmosphere; 2) how this energy is transferred through the solar atmosphere; and 3) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion-neutral interaction effects (INIE) in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative MHD simulations with the Bifrost code (Gudiksen et al. 2011) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The INIE are treated using generalized Ohms law, i.e., we consider the Hall term and the ambipolar diffusion in the induction equation. The interaction between the different species affects the modeled atmosphere as follows: 1) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere; 2) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modeled atmospheres of simulations with and without INIE.



قيم البحث

اقرأ أيضاً

In this paper, we study the heating of the magnetized solar chromosphere induced by the large fraction of neutral atoms present in this layer. The presence of neutrals, together with the decrease with height of the collisional coupling, leads to devi ations from the classical MHD behavior of the chromospheric plasma. A relative net motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. The dissipation of currents in the chromosphere is enhanced orders of magnitude due to the action of ambipolar diffusion, as compared to the standard ohmic diffusion. We propose that a significant amount of magnetic energy can be released to the chromosphere just by existing force-free 10--40 G magnetic fields there. As a consequence, we conclude that ambipolar diffusion is an important process that should be included in chromospheric heating models, as it has the potential to rapidly heat the chromosphere. We perform analytical estimations and numerical simulations to prove this idea.
The chromosphere is a partially ionized layer of the solar atmosphere, the transition between the photosphere where the gas motion is determined by the gas pressure and the corona dominated by the magnetic field. We study the effect of partial ioniza tion for 2D wave propagation in a gravitationally stratified, magnetized atmosphere with properties similar to the solar chromosphere. We adopt an oblique uniform magnetic field in the plane of propagation with strength suitable for a quiet sun region. The theoretical model used is a single fluid magnetohydrodynamic approximation, where ion-neutral interaction is modeled by the ambipolar diffusion term. Magnetic energy can be converted into internal energy through the dissipation of the electric current produced by the drift between ions and neutrals. We use numerical simulations where we continuously drive fast waves at the bottom of the atmosphere. The collisional coupling between ions and neutrals decreases with the decrease of the density and the ambipolar effect becomes important. Fast waves excited at the base of the atmosphere reach the equipartition layer and reflect or transmit as slow waves. While the waves propagate through the atmosphere and the density drops, the waves steepen into shocks. The main effect of ambipolar diffusion is damping of the waves. We find that for the parameters chosen in this work, the ambipolar diffusion affects the fast wave before it is reflected, with damping being more pronounced for waves which are launched in a direction perpendicular to the magnetic field. Slow waves are less affected by ambipolar effects. The damping increases for shorter periods and larger magnetic field strengths. Small scales produced by the nonlinear effects and the superposition of different types of waves created at the equipartition height are efficiently damped by ambipolar diffusion.
Over the last decades, realistic 3D radiative-MHD simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and the magnetic field on the Sun. Most of such simulations are based on approximati ons of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of large amount of neutrals leads to a partial decoupling of the plasma and the magnetic field. As a consequence of that, a series of non-ideal effects (ambipolar diffusion, Hall effect and battery effect) arises. The ambipolar effect is the dominant one in the solar chromosphere. Here we report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are done using the newly developed Mancha3D code. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase due to the ambipolar effect using the simulations with battery-excited dynamo fields.
Brown dwarfs emit bursts of Halpha, white light flares, and show radio flares and quiescent radio emission. They are suggested to form Aurorae, similar to planets in the solar system but much more energetic. All these processes require a source gas w ith an appropriate degree of ionisation which, so far, is mostly postulated to be sufficient. We aim to demonstrate that the galactic environment influences atmospheric ionisation, and that it hence amplifies or enables the magnetic coupling of the atmospheres of ultra-cool objects, like brown dwarfs and free-floating planets. We consider the effect of photoionisation by Lyman continuum radiation in three different environments: the InterStellar Radiation Field (ISRF), O and B stars in star forming regions, and also for white dwarf companions in binary systems. We apply our Monte Carlo radiation transfer code to investigate the effect of Lyman continuum photoionisation for prescribed atmosphere structures for very low-mass objects. The external radiation environment plays an important role for the atmospheric ionisation of very low-mass, ultra-cool objects. Lyman continuum irradiation greatly increases the level of ionisation in the uppermost atmospheric regions. Our results suggest that a shell of an almost fully ionised atmospheric gas emerges for brown dwarfs in star forming regions and brown dwarfs in white dwarf binary systems. As a consequence, brown dwarf atmospheres can be magnetically coupled which is the presumption for chromospheric heating to occur and for Aurorae to emerge. First tests for assumed chromosphere-like temperature values suggest that the resulting free-free X-ray luminosities are comparable with those observed from non-accreting brown dwarfs in star forming regions.
The Farley-Buneman instability is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is greater than unity. By applying these results to chromospheric conditions, we show that the Farley-Buneman instability can not be responsible for the quasi-steady heating of the solar chromosphere. However, in the presence of strong cross-field currents it can produce small-scale, $sim 0.1-3$ m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا