ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Ehrenfests Equations and phase transition in Black Holes

147   0   0.0 ( 0 )
 نشر من قبل Behrouz Mirza
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize Ehrenfests equations to systems having two work terms, i.e. systems with three degrees of freedom. For black holes with two work terms we obtain nine equations instead of two to be satisfied at the critical point of a second order phase transition. We finally generalize this method to a system with an arbitrary number of degrees of freedom and found there is $frac{N(N+1)^{2}}{2}$ equations to be satisfied at the point of a second order phase transition where $N$ is number of work terms in the first law of thermodynamics.


قيم البحث

اقرأ أيضاً

In this paper,we have studied phase transitions of higher dimensional charge black hole with spherical symmetry. we calculated the local energy and local temperature, and find that these state parameters satisfy the first law of thermodynamics. We an alyze the critical behavior of black hole thermodynamic system by taking state parameters $(Q,Phi)$ of black hole thermodynamic system, in accordance with considering to the state parameters $(P,V)$ of Van der Waals system respectively. we obtain the critical point of black hole thermodynamic system, and find the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime, and is intrinsic property of black hole thermodynamic system.
In this paper, we extend the study of the relationship between the photon sphere and the thermodynamic phase transition, especially the reentrant phase transition, to this black hole background. According to the number of the thermodynamic critical p oints, the black hole systems are divided into four cases with different values of Born-Infeld parameter b, where the black hole systems can have no phase transition, reentrant phase transition, or Van der Waals-like phase transition. For these different cases, we obtain the corresponding phase structures in pressure-temperature diagram and temperature-specific volume diagram. The tiny differences between these cases are clearly displayed. On the other hand, the radius rps and the minimal impact parameter ups of the photon sphere are calculated via the effective potential of the radial motion of photons. For different cases, rps and ups are found to have different behaviors. In particular, with the increase of rps or ups, the temperature possesses a decrease-increase-decrease-increase behavior for fixed pressure if there exists the reentrant phase transition. While for fixed temperature, the pressure will show an increase-decrease-increase-decrease behavior instead. These behaviors are quite different from that of the Van der Waals-like phase transition. Near the critical point, the changes of rps and ups among the black hole phase transition confirm an universal critical exponent 12. Therefore, all the results indicate that, for the charged Born-Infeld-AdS black holes, not only the Van der Waals-like phase transition, but also the reentrant phase transition can be reflected through the photon sphere.
The accretion of phantom fields by black holes within a thermodynamic context is addressed. For a fluid violating the dominant energy condition, case of a phantom fluid, the Euler and Gibbs relations permit two different possibilities for the entropy and temperature: a situation in which the entropy is negative and the temperature is positive or vice-versa. In the former case, if the generalized second law (GSL) is valid, then the accretion process is not allowed whereas in the latter, there is a critical black hole mass below which the accretion process occurs. In a universe dominated by a phantom field, the critical mass drops quite rapidly with the cosmic expansion and black holes are only slightly affected by accretion. All black holes disappear near the big rip, as suggested by previous investigations, if the GSL is violated.
The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling to gravity arising in beyond-generalized Proca theories, the speed of gravitational waves $c_t$ on the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological background can be equal to that of light $c$ under a certain condition. By using this condition alone, we show that the speed of gravitational waves in the vicinity of static and spherically symmetric black holes is also equivalent to $c$ for the propagation of odd-parity perturbations along both radial and angular directions. As a by-product, the black holes arising in our beyond-generalized Proca theories are plagued by neither ghost nor Laplacian instabilities against odd-parity perturbations. We show the existence of both exact and numerical black hole solutions endowed with vector hairs induced by the quartic-order coupling.
Searching for the effect of quintessence dark energy on the kinetics of black hole phase transition, we investigate in detail the dynamic phase transition of charged AdS black holes surrounded by quintessence in this paper. Based on the Gibbs free en ergy landscape, we obtain the analytic expression of the corresponding Gibbs free energy. As shown in $G_L-r_+$ curve at the phase transition temperature, there exist double wells with the same depth, providing further support on the finding in the former literature. By numerically solving the Fokker-Planck equation with both the initial condition and reflecting boundary condition imposed, we probe the probabilistic evolution of charged AdS black holes surrounded by quintessence. The peak denoting the initial black hole state gradually decreases while the other peak starts to grow from zero, approaching to be a stationary distribution in the long time limit with two peaks denoting the large and small black holes respectively. We also study the first passage process of charged AdS black holes surrounded by quintessence and discuss the relevant quantities. We resolve the Fokker-Planck equation by adding the absorbing boundary condition for the intermediate transition state. It is shown intuitively that the peaks located at the large (small) black hole decay very rapidly, irrespective of the initial black hole state. In all the procedures above, we have compared the cases with different choices of the state parameter of quintessence dark energy $omega_q$. The larger $omega_q$ is, the faster the initial black hole state decays, showing the effect of quintessence dark energy. To the best of our knowledge, it is the first probe on the influence of dark energy on the dynamic phase transition of charged AdS black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا