ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field measurements at milliarcsecond resolution around massive young stellar objects

124   0   0.0 ( 0 )
 نشر من قبل Gabriele Surcis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields have only recently been included in theoretical simulations of high-mass star formation. The simulations show that magnetic fields can play a crucial role not only in the formation and dynamics of molecular outflows, but also in the evolution of circumstellar disks. Therefore, new measurements of magnetic fields at milliarcsecond resolution close to massive young stellar objects (YSOs) are fundamental for providing new input for numerical simulations and for understanding the formation process of massive stars. The polarized emission of 6.7 GHz CH3OH masers allows us to investigate the magnetic field close to the massive YSO where the outflows and disks are formed. Recently, we have detected with the EVN CH3OH maser polarized emission towards 10 massive YSOs. From a first statistical analysis we have found evidence that magnetic fields are primarily oriented along the molecular outflows. To improve our statistics we are carrying on a large observational EVN campaign for a total of 19 sources, the preliminary results of the first seven sources are presented in this contribution. Furthermore, we also describe our efforts to estimate the Lande g-factors of the CH3OH maser transition to determine the magnetic field strength from our Zeeman-splitting measurements.



قيم البحث

اقرأ أيضاً

IRAS20126+4104 is a well studied B0.5 protostar that is surrounded by a ~1000 au Keplerian disk and is where a large-scale outflow originates. Both 6.7-GHz CH3OH masers and 22-GHz H2O masers have been detected toward this young stellar object. The CH 3OH masers trace the Keplerian disk, while the H2O masers are associated with the surface of the conical jet. Recently, observations of dust polarized emission (350 um) at an angular resolution of 9 arcseconds (~15000 au) have revealed an S-shaped morphology of the magnetic field around IRAS20126+4104. The observations of polarized maser emissions at milliarcsecond resolution (~20 au) can make a crucial contribution to understanding the orientation of the magnetic field close to IRAS20126+4104. This will allow us to determine whether the magnetic field morphology changes from arcsecond resolution to milliarcsecond resolution. The European VLBI Network was used to measure the linear polarization and the Zeeman splitting of the 6.7-GHz CH3OH masers toward IRAS20126+4104. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman splitting of the 22-GHz H2O masers toward the same region. We detected 26 CH3OH masers and 5 H2O masers at high angular resolution. Linear polarization emission was observed toward three CH3OH masers and toward one H2O maser. Significant Zeeman splitting was measured in one CH3OH maser (Delta V_{Z}=-9.2 +/- 1.4 m/s). No significant (5 sigma) magnetic field strength was measured using the H2O masers. We found that in IRAS20126+4104 the rotational energy is less than the magnetic energy.
Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For examp le, the observed HC$_{5}$N abundance toward the G28.28$-$0.36 MYSO is higher than that in L1527, which is one of the warm carbon chain chemistry (WCCC) sources, by more than one order of magnitude (Taniguchi et al., 2017). In this paper, we present chemical simulations of hot-core models with a warm-up period using the astrochemical code Nautilus. We find that the cyanopolyynes are formed initially in the gas phase and accreted onto the bulk and surface of granular ice mantles during the lukewarm phase, which occurs at $25 < T < 100$ K. In slow warm-up period models, the peak abundances occur as the cyanopolyynes desorb from dust grains after the temperature rises above 100 K. The lower limits of the abundances of HC$_{5}$N, CH$_{3}$CCH, and CH$_{3}$OH observed in the G28.28$-$0.36 MYSO can be reproduced in our hot-core models, after their desorption from dust grains. Moreover, previous observations suggested chemical diversity in envelopes around different MYSOs. We discuss possible interpretations of relationships between stages of the star-formation process and such chemical diversity, such as the different warm-up timescales. This timescale depends not only on the mass of central stars but also on the relationship between the size of warm regions and their infall velocity.
We discuss VLTI AMBER and MIDI interferometry in addition to single-dish Subaru observations of massive young stellar objects. The observations probe linear size scales between 10 to 1000 AU for the average distance of our sources.
79 - Meyer D. M.-A. 2018
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to such luminous bursts, when clumps of fragmented accretion discs migrate onto the star. We simulate the early evolution of MYSOs formed by the gravitational collapse of rotating 100 M pre-stellar cores and analyze the characteristics of the bursts that episodically accompany their strongly time-variable protostellar lightcurve. We predict that MYSOs spend ~ 10^3 yr (~ 1.7%) of their modelled early 60 kyr experiencing eruptive phases, during which the peak luminosity exceeds the quiescent pre-burst values by factors from 2.5 to more than 40. Throughout these short time periods, they can acquire a substential fraction (up to ~ 50 %) of their zero-age-main sequence mass. Our findings show that fainter bursts are more common than brighter ones. We discuss our results in the context of the known bursting MYSOs, e.g. NGC6334I-MM1 and S255IR-NIRS3, and propose that these monitored bursts are part of a long-time ongoing series of eruptions, which might, in the future, be followed by other luminous flares.
We present K-band polarimetric images of several massive young stellar objects at resolutions $sim$ 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each fie ld. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا