ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical investigation on the transition metal borides with Ta3B4-type structure: a class of hard and refractory materials

50   0   0.0 ( 0 )
 نشر من قبل Naihua Miao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on density functional theory, we have systematically studied the structural stability, mechanical properties and chemical bonding of the transition metal borides M3B4 (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) for the first time. All the present studied M3B4 have been demonstrated to be thermodynamically and mechanically stable. The bulk modulus, shear modulus, Youngs modulus, Poissons ratio, microhardness, Debye temperature and anisotropy have been derived for ideal polycrystalline M3B4 aggregates. In addition, the relationship between Debye temperature and microhardness has been discussed for these isostructral M3B4. Furthermore, the results of the Cauchy pressure, the ratio of bulk modulus to shear modulus, and Poissons ratio suggest that the valence electrons of transition metals play an important role in the ductility of M3B4. The calculated total density of states for M3B4 indicates that all these borides display a metallic conductivity. By analyzing the electron localization function, we show that the improvement of the ductility in these M3B4 might attribute to the decrease of their angular bonding character.

قيم البحث

اقرأ أيضاً

Ultraviolet-photoemission (UPS) measurements and supporting specific-heat, thermal-expansion, resistivity and magnetic-moment measurements are reported for the magnetic shape-memory alloy Ni$_2$MnGa over the temperature range $100K < T < 250K$. All m easurements detect clear signatures of the premartensitic transition ($T_mathrm{PM}sim 247K$) and the martensitic transition ($T_mathrm{M} sim 196K$). Temperature-dependent UPS shows a dramatic depletion of states (pseudogap) at $T_mathrm{PM}$ located 0.3eV below the Fermi energy. First-principles electronic structure calculations show that the peak observed at 0.3eV in the UPS spectra for $T > T_mathrm{PM}$ is due to the Ni-d minority-spin electrons. Below $T_mathrm{M}$ this peak disappears, resulting in an enhanced density of states at energies around 0.8eV. This enhancement reflects Ni-d and Mn-d electronic contributions to the majority-spin density of states and is accompanied by significant reconstruction of the Fermi surface.
MXenes, a family of two-dimensional transition metal carbides and nitrides, have various tunable physical and chemical properties. Their diverse prospective applications in electronics and energy storage devices have triggered great interests in scie nce and technology. MXenes can be functionalized by different surface terminations. Some O and F functionalized MXenes monolayers have been predicted to be topological insulators (TIs). However, the reported OH functionalized MXenes TIs are very few and their electronic structures need to be investigated in more detail. It has been revealed that the work functions of MXenes are reduced significantly by OH termination and the image potential (IP) states move close to the Fermi level. The wave functions of these IP states are spatially extensive outside the surfaces. By stacking the OH-functionalized MXenes, the energies of the IP states can be modulated by the interlayer distances of multilayers, because the overlap and hybridization of the wave functions between the neighboring layers are significant. Therefore, these stacking layers are interacted and coupled with IP states. Here, based on first-principles calculations, we demonstrate that the stacking of two-dimensional topologically trivial OH-functionalized MXenes, such as V$_2$HfC$_2$(OH)$_2$, possibly gives rise to the topologically nontrivial energy bands. In other words, the topological properties of V$_2$HfC$_2$(OH)$_2$ multilayers can be modulated by its interlayer distance. An energy band inversion involving IP states is proposed. We expect that these results can advance the future application of MXenes or other low work function multilayer materials as controllable TI devices.
Synchrotron X-ray total scattering studies of structural changes in rutile VO2 at the metal-insulator transition temperature of 340 K reveal that monoclinic and tetragonal phases of VO2 coexist in equilibrium, as expected for a first-order phase tran sition. No evidence for any distinct intermediate phase is seen. Unbiased local structure studies of the changes in V--V distances through the phase transition, using reverse Monte Carlo methods, support the idea of phase coexistence and point to the high degree of correlation in the dimerized low-temperature structure. No evidence for short range V--V correlations that would be suggestive of local dimers is found in the metallic phase.
The electronic structure in alkaline earth AeO (Ae = Be, Mg, Ca, Sr, Ba) and post-transition metal oxides MeO (Me = Zn, Cd, Hg) is probed with oxygen K-edge X-ray absorption and emission spectroscopy. The experimental data is compared with density fu nctional theory electronic structure calculations. We use our experimental spectra of the oxygen K-edge to estimate the bandgaps of these materials, and compare our results to the range of values available in the literature.
113 - Takayoshi Katase , Kenji Endo , 2017
Infrared (IR) transmittance tunable metal-insulator conversion was demonstrated on glass substrate by using thermochromic vanadium dioxide (VO2) as the active layer in three-terminal thin-film-transistor-type device with water-infiltrated glass as th e gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as advanced smart window.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا