ﻻ يوجد ملخص باللغة العربية
Given a hyperbolic surface, the set of all closed geodesics whose length is minimal form a graph on the surface, in fact a so-called fat graph, which we call the systolic graph. We study which fat graphs are systolic graphs for some surface (we call these admissible). There is a natural necessary condition on such graphs, which we call combinatorial admissibility. Our first main result is that this condition is also sufficient. It follows that a sub-graph of an admissible graph is admissible. Our second major result is that there are infinitely many minimal non-admissible fat graphs (in contrast, for instance, to the classical result that there are only two minimal non-planar graphs).
In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound.
An embedding of a metric graph $(G, d)$ on a closed hyperbolic surface is emph{essential}, if each complementary region has a negative Euler characteristic. We show, by construction, that given any metric graph, its metric can be rescaled so that it
In this paper we study the common distance between points and the behavior of a constant length step discrete random walk on finite area hyperbolic surfaces. We show that if the second smallest eigenvalue of the Laplacian is at least 1/4, then the di
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.