ترغب بنشر مسار تعليمي؟ اضغط هنا

The GAPS Programme with HARPS-N at TNG VIII: Observations of the Rossiter-McLaughlin effect and characterisation of the transiting planetary systems HAT-P-36 and WASP-11/HAT-P-10

102   0   0.0 ( 0 )
 نشر من قبل Luigi Mancini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the true and the projected obliquity of HAT-P-36 and WASP-11/HAT-P-10 systems, respectively, which are both composed of a relatively cool star and a hot-Jupiter planet. Thanks to the high-resolution spectrograph HARPS-N, we observed the Rossiter-McLaughlin effect for both the systems by acquiring precise radial-velocity measurements during planetary transit events. We also present photometric observations comprising six light curves covering five transit events, obtained using three medium-class telescopes and the telescope-defocussing technique. One transit of WASP-11/HAT-P-10 was followed simultaneously from two observatories. The three transit light curves of HAT-P-36b show anomalies that are attributable to starspot complexes on the surface of the parent star, in agreement with the analysis of its spectra that indicate a moderate activity. By analysing the complete HATNet data set of HAT-P-36, we estimated the stellar rotation period by detecting a periodic photometric modulation in the light curve caused by star spots, obtaining Prot=15.3 days, which implies that the inclination of the stellar rotational axis with respect to the line of sight is 65 degree. We used the new spectroscopic and photometric data to revise the main physical parameters and measure the sky-projected misalignment angle of the two systems. We found lambda=-14 degree for HAT-P-36 and lambda=7 degree for WASP-11/HAT-P-10, indicating in both cases a good spin-orbit alignment. In the case of HAT-P-36, we also measured its real obliquity, which turned out to be 25 degrees.


قيم البحث

اقرأ أيضاً

We characterised five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39 and WASP-60) and determined their sky-projected planet orbital obliquity through the measurement of the RM effect. We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the RM effect in the target systems and determine the sky-projected angle between the planetary orbital plane and the stellar equator. The characterisation of stellar atmospheric parameters was performed exploiting the HARPS-N spectra, using line equivalent width ratios, and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination. From the analysis of the RM effect we derived a sky-projected obliquity of 21.2 degree, -54 degree, -2.1 degree, 0 degree and -129 degree for HAT-P-3b, HAT-P-12b, HAT-P-22b, WASP-39b and WASP-60b, respectively. The latter value indicates that WASP-60b is moving on a retrograde orbit. These values represent the first measurements of lambda for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 days, which allowed us to estimate the true misalignment angle of HAT-P-22b, psi=24 degree. The revision of the physical parameters of the five exoplanetary systems returned values that are fully compatible with those existing in the literature. The exception to this is the WASP-60 system, for which, based on higher quality spectroscopic and photometric data, we found a more massive and younger star and a larger and hotter planet.
The measurement of the Rossiter-McLaughlin effect for transiting exoplanets places constraints on the orientation of the orbital axis with respect to the stellar spin axis, which can shed light on the mechanisms shaping the orbital configuration of p lanetary systems. Here we present the interesting case of the Saturn-mass planet HAT-P-18b, which orbits one of the coolest stars for which the Rossiter-McLaughlin effect has been measured so far. We acquired a spectroscopic time-series, spanning a full transit, with the HARPS-N spectrograph mounted at the TNG telescope. The very precise radial velocity measurements delivered by the HARPS-N pipeline were used to measure the Rossiter-McLaughlin effect. Complementary new photometric observations of another full transit were also analysed to obtain an independent determination of the star and planet parameters. We find that HAT-P-18b lies on a counter-rotating orbit, the sky-projected angle between the stellar spin axis and the planet orbital axis being lambda=132 +/- 15 deg. By joint modelling of the radial velocity and photometric data we obtain new determinations of the star (M_star = 0.770 +/- 0.027 M_Sun; R_star= 0.717 +/- 0.026 R_Sun; Vsin(I_star) = 1.58 +/- 0.18 km/s) and planet (M_pl = 0.196 +/- 0.008 M_J; R_pl = 0.947 +/- 0.044 R_J) parameters. Our spectra provide for the host star an effective temperature T_eff = 4870 +/- 50 K, a surface gravity of log(g_star) = 4.57 +/- 0.07 cm/s, and an iron abundance of [Fe/H] = 0.10 +/- 0.06. HAT-P-18b is one of the few planets known to transit a star with T_eff < 6250 K on a retrograde orbit. Objects such as HAT-P-18b (low planet mass and/or relatively long orbital period) most likely have a weak tidal coupling with their parent stars, therefore their orbits preserve any original misalignment. As such, they are ideal targets to study the causes of orbital evolution in cool main-sequence stars.
A long-term multi-purpose observational programme has started with HARPS-N@TNG aimed to characterise the global architectural properties of exoplanetary systems. In this first paper we fully characterise the transiting system Qatar-1. We exploit HARP S-N high-precision radial velocity measurements obtained during a transit to measure the Rossiter-McLaughlin effect in the Qatar-1 system, and out-of-transit measurements to redetermine the spectroscopic orbit. New photometric transit light-curves are analysed and a spectroscopic characterisation of the host star atmospheric parameters is performed based on various methods (line equivalent width ratios, spectral synthesis, spectral energy distribution). We achieved a significant improvement in the accuracy of the orbital parameters and derived the spin-orbit alignment of the system; this information, combined with the spectroscopic determination of the host star properties, allows us to derive the fundamental physical parameters for star and planet (masses and radii). The orbital solution for the Qatar-1 system is consistent with a circular orbit and the system presents a sky-projected obliquity of lambda = -8.4+-7.1 deg. The planet, with a mass of 1.33+-0.05 M_J, is found to be significantly more massive than previously reported. The host star is confirmed to be metal-rich ([Fe/H]= 0.20+-0.10) and slowly rotating (vsinI = 1.7+-0.3 km/s), though moderately active, as indicated by strong chromospheric emission in the Ca II H&K line cores (logR_HK about -4.60). The system is well aligned and fits well within the general lambda vs Teff trend. We definitely rule out any significant orbital eccentricity. The evolutionary status of the system is inferred based on gyrochronology, and the present orbital configuration and timescale for orbital decay are discussed in terms of star-planet tidal interactions.
In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, VsinI$sim$110 km/s) with the HARPS-N spectrograph at the TNG. In this work we analyse the spectra and the extracted radial velocities (RVs), to constrain t he physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar RVs with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra and analysis led us to update the orbital and physical parameters of the system, improving in particular the value of the planetary mass to $M_{rm p}=2.88pm0.35,M_{rm Jup}$. We discovered an anomalous in-transit RV deviation from the theoretical Rossiter-McLaughlin effect solution, calculated from the projected spin-orbit angle $lambda=-85.78pm0.46$ degrees measured with Doppler tomography. We prove that this deviation is caused by the planetary atmosphere of KELT-9b, thus we name this effect Atmospheric Rossiter-McLaughlin effect. By analysing the magnitude of the RV anomaly, we obtained information on the extension of the planetary atmosphere as weighted by the model used to retrieve the stellar mean line profiles, which is up to $1.22pm0.02,R_{rm p}$. The Atmospheric Rossiter-McLaughlin effect will be observable for other exoplanets whose atmosphere has non-negligible correlation with the stellar mask used to retrieve the RVs, in particular ultra-hot Jupiters with iron in their atmosphere. The duration and amplitude of the effect will depend not only on the extension of the atmosphere, but also on the in-transit planetary RVs and on the projected rotational velocity of the parent star.
274 - E. K. Simpson 2010
We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars rotation axes. The planets WASP-24 b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: {lambda} = -4.7 pm 4.0{deg}, {lambda} = 15 + 33{deg}/-43{deg} and {lambda} = -9.7 +9.0{deg}/-7.7{deg}, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, {lambda} = -79 +4.5{deg}/-4.3{deg}. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا