ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2014 KIDA network for interstellar chemistry

109   0   0.0 ( 0 )
 نشر من قبل Valentine Wakelam
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.

قيم البحث

اقرأ أيضاً

We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of 0D and 1D interstellar sources.
We report the detection of linear and cyclic isomers of C3H and C3H2 towards various starless cores and review the corresponding chemical pathways involving neutral (C3Hx with x=1,2) and ionic (C3Hx+ with x = 1,2,3) isomers. We highlight the role of the branching ratio of electronic Dissociative Recombination (DR) reactions of C3H2+ and C3H3+ isomers showing that the statistical treatment of the relaxation of C3H* and C3H2* produced in these DR reactions may explain the relative c,l-C3H and c,l-C3H2 abundances. We have also introduced in the model the third isomer of C3H2 (HCCCH). The observed cyclic-to-linear C3H2 ratio vary from 110 + or - 30 for molecular clouds with a total density around 1e4 molecules.cm-3 to 30 + or - 10 for molecular clouds with a total density around 4e5 molecules.cm-3, a trend well reproduced with our updated model. The higher ratio for low molecular cloud densities is mainly determined by the importance of the H + l-C3H2 -> H + c-C3H2 and H + t-C3H2 -> H + c-C3H2 isomerization reactions.
Predictions of astrochemical models depend strongly on the reaction rate coefficients used in the simulations. We reviewed a number of key reactions for the chemistry of nitrogen-bearing species in the dense interstellar medium and proposed new react ion rate coefficients for those reactions. The details of the reviews are given in the form of a datasheet associated with each reaction. The new recommended rate coefficients are given with an uncertainty and a temperature range of validity and will be included in KIDA (http://kida.obs.u-bordeaux1.fr).
Our main purpose is to estimate the effect of assuming uniform density on the line-of-sight in PDR chemistry models, compared to a more realistic distribution for which total gas densities may well vary by several orders of magnitude. A secondary goa l of this paper is to estimate the amount of molecular hydrogen which is not properly traced by the CO (J = 1 -> 0) line, the so-called dark molecular gas. We use results from a magnetohydrodynamical (MHD) simulation as a model for the density structures found in a turbulent diffuse ISM with no star-formation activity. The Meudon PDR code is then applied to a number of lines of sight through this model, to derive their chemical structures. It is found that, compared to the uniform density assumption, maximal chemical abundances for H2, CO, CH and CN are increased by a factor 2 to 4 when taking into account density fluctuations on the line of sight. The correlations between column densities of CO, CH and CN with respect to those of H2 are also found to be in better overall agreement with observations. For instance, at N(H2) > 2.10^{20} cm-2, while observations suggest that d[log N(CO)]=d[log N(H2)] = 3.07 +/- 0.73, we find d[log N(CO)]=d[log N(H2)] =14 when assuming uniform density, and d[log N(CO)]=d[log N(H2)] = 5.2 when including density fluctuations.
76 - J.X. Ge , J.H. He , H.R. Yan 2015
Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modeling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about ten; 3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviors too. These effects usually begin to emerge from a typical DC model age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations onto positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا