ترغب بنشر مسار تعليمي؟ اضغط هنا

Rule-based Cross-matching of Very Large Catalogs in NED

70   0   0.0 ( 0 )
 نشر من قبل Patrick Ogle
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The NASA/IPAC Extragalactic Database (NED) has deployed a new rule-based cross-matching algorithm called Match Expert (MatchEx), capable of cross-matching very large catalogs (VLCs) with >10 million objects. MatchEx goes beyond traditional position-based cross-matching algorithms by using other available data together with expert logic to determine which candidate match is the best. Furthermore, the local background density of sources is used to determine and minimize the false-positive match rate and to estimate match completeness. The logical outcome and statistical probability of each match decision is stored in the database, and may be used to tune the algorithm and adjust match parameter thresholds. For our first production run, we cross-matched the GALEX All Sky Survey Catalog (GASC), containing nearly 40 million NUV-detected sources, against a directory of 180 million objects in NED. Candidate matches were identified for each GASC source within a 7.5 arcsecond radius. These candidates were filtered on position-based matching probability, and on other criteria including object type and object name. We estimate a match completeness of 97.6% and a match accuracy of 99.75%. MatchEx is being used to cross-match over 2 billion catalog sources to NED, including the Spitzer Source List, the 2MASS Point-Source Catalog, AllWISE, and SDSS DR 10. It will also speed up routine cross-matching of sources as part of the NED literature pipeline.

قيم البحث

اقرأ أيضاً

Fast access to large catalogs is required for some astronomical applications. Here we introduce the catsHTM tool, consisting of several large catalogs reformatted into HDF5-based file format, which can be downloaded and used locally. To allow fast ac cess, the catalogs are partitioned into hierarchical triangular meshes and stored in HDF5 files. Several tools are provided to perform efficient cone searches at resolutions spanning from a few arc seconds to degrees, within a few milliseconds time. The first released version includes the following catalogs (by alphabetical order): 2MASS, 2MASS extended sources, AKARI, APASS, Cosmos, DECaLS/DR5, FIRST, GAIA/DR1, GAIA/DR2, GALEX/DR6Plus7, HSC/v2, IPHAS/DR2, NED redshifts, NVSS, Pan-STARRS1/DR1, PTF photometric catalog, ROSAT faint source, SDSS sources, SDSS/DR14 spectroscopy, Spitzer/SAGE, Spitzer/IRAC galactic center, UCAC4, UKIDSS/DR10, VST/ATLAS/DR3, VST/KiDS/DR3, WISE and XMM. We provide Python code that allows to perform cone searches, as well as MATLAB code for performing cone searches, catalog cross-matching, general searches, as well as load and create these catalogs.
We report the results of a cross-match study between the hard X-ray and GeV gamma-ray catalogs, by making use of the latest 105-month Swift-BAT and 10-yr Fermi-LAT catalogs, respectively. The spatial cross-matching between the two catalogs results in the matching of 132 point-like sources, including ~5% of false-match sources. Additionally, 24 sources that have been identified as the same identifications are matched. Among the 75 extended sources in the Fermi-LAT catalog, 31 sources have spatial coincidences with at least one Swift-BAT source inside their extent. All the matched sources consist of blazars (>60%), pulsars and pulsar wind nebulae (~13%), radio galaxies (~7%), binaries (~5%), and others. Compared to the original catalogs, the matched sources are characterized by a double-peaked photon index distribution, higher flux, and larger gamma-ray variability index. This difference arises from the different populations of sources, particularly the large proportion of blazars (i.e., FSRQ and BL Lac). We also report 13 cross-matched and unidentified sources. The matched sources in this study would be promising in the intermediate energy band between the hard X-ray and GeV gamma-ray observations, that is the unexplored MeV gamma-ray domain.
Considering the high heterogeneity of the ontologies pub-lished on the web, ontology matching is a crucial issue whose aim is to establish links between an entity of a source ontology and one or several entities from a target ontology. Perfectible si milarity measures, consid-ered as sources of information, are combined to establish these links. The theory of belief functions is a powerful mathematical tool for combining such uncertain information. In this paper, we introduce a decision pro-cess based on a distance measure to identify the best possible matching entities for a given source entity.
143 - M. Lacy 2019
The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution ($approx$2.5), sensitivity (a 1$sigma$ goal of 70 $mu$Jy/beam in the coadded data), full linear Stokes polarimetry, t ime domain coverage, and wide bandwidth (2-4 GHz). The first observations began in September 2017, and observing for the survey will finish in 2024. VLASS will use approximately 5500 hours of time on the Karl G. Jansky Very Large Array (VLA) to cover the whole sky visible to the VLA (Declination $>-40^{circ}$), a total of 33,885 deg$^2$. The data will be taken in three epochs to allow the discovery of variable and transient radio sources. The survey is designed to engage radio astronomy experts, multi-wavelength astronomers, and citizen scientists alike. By utilizing an on the fly interferometry mode, the observing overheads are much reduced compared to a conventional pointed survey. In this paper, we present the science case and observational strategy for the survey, and also results from early survey observations.
Over the last decade, the continuing decline in the cost of digital computing technology has brought about a dramatic transformation in how digital instrumentation for radio astronomy is developed and operated. In most cases, it is now possible to in terface consumer computing hardware, e.g. inexpensive graphics processing units and storage devices, directly to the raw data streams produced by radio telescopes. Such systems bring with them myriad benefits: straightforward upgrade paths, cost savings through leveraging an economy of scale, and a lowered barrier to entry for scientists and engineers seeking to add new instrument capabilities. Additionally, the typical data-interconnect technology used with general-purpose computing hardware -- Ethernet -- naturally permits multiple subscribers to a single raw data stream. This allows multiple science programs to be conducted in parallel. When combined with broad bandwidths and wide primary fields of view, radio telescopes become capable of achieving many science goals simultaneously. Moreover, because many science programs are not strongly dependent on observing cadence and direction (e.g. searches for extraterrestrial intelligence and radio transient surveys), these so-called commensal observing programs can dramatically increase the scientific productivity and discovery potential of an observatory. In this whitepaper, we detail a project to add an Ethernet-based commensal observing mode to the Jansky Very Large Array (VLA), and discuss how this mode could be leveraged to conduct a powerful program to constrain the distribution of advanced life in the universe through a search for radio emission indicative of technology. We also discuss other potential science use-cases for the system, and how the system could be used for technology development towards next-generation processing systems for the Next Generation VLA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا