ﻻ يوجد ملخص باللغة العربية
We summarize the foliation approach to ${cal N}=1$ compactifications of eleven-dimensional supergravity on eight-manifolds $M$ down to $mathrm{AdS}_3$ spaces for the case when the internal part $xi$ of the supersymmetry generator is chiral on some proper subset ${cal W}$ of $M$. In this case, a topological no-go theorem implies that the complement $Msetminus {cal W}$ must be a dense open subset, while $M$ admits a singular foliation ${bar {cal F}}$ (in the sense of Haefliger) which is defined by a closed one-form $boldsymbol{omega}$ and is endowed with a longitudinal $G_2$ structure. The geometry of this foliation is determined by the supersymmetry conditions. We also describe the topology of ${bar {cal F}}$ in the case when $boldsymbol{omega}$ is a Morse form.
M-theory compactified on $G_2$-holonomy manifolds results in 4d $mathcal{N}=1$ supersymmetric gauge theories coupled to gravity. In this paper we focus on the gauge sector of such compactifications by studying the Higgs bundle obtained from a partial
We perform a Hodge theoretic study of parameter dependent families of D-branes on compact Calabi-Yau manifolds in type II and F-theory compactifcations. Starting from a geometric Gauss-Manin connection for B type branes we study the integrability and
We classify the simply-connected supersymmetric parallelisable backgrounds of heterotic supergravity. They are all given by parallelised Lie groups admitting a bi-invariant lorentzian metric. We find examples preserving 4, 8, 10, 12, 14 and 16 of the 16 supersymmetries.
We study space-time symmetries in scalar quantum field theory (including interacting theories) on static space-times. We first consider Euclidean quantum field theory on a static Riemannian manifold, and show that the isometry group is generated by o
Compactification of M- / string theory on manifolds with $G_2$ structure yields a wide variety of 4D and 3D physical theories. We analyze the local geometry of such compactifications as captured by a gauge theory obtained from a three-manifold of ADE