ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmon modes of a massive Dirac plasma, and their superlattices

123   0   0.0 ( 0 )
 نشر من قبل Amit Agarwal
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the collective density oscillations of a collection of charged massive Dirac particles, in one, two and three dimensions and their one dimensional superlattice. We calculate the long wavelength limit of the dynamical polarization function analytically, and use the random phase approximation to obtain the plasmon dispersion. The density dependence of the long wavelength plasmon frequency in massive Dirac systems is found to be different compared to systems with parabolic, and gapless Dirac dispersion. We also calculate the long wavelength plasmon dispersion of a 1d metamaterial made from 1d and 2d massive Dirac plasma. Our analytical results will be useful for exploring the use of massive Dirac materials as electrostatically tunable plasmonic metamaterials and can be experimentally verified by infrared spectroscopy as in the case of graphene [L. Ju. et. al., Nat. Nanotechnol. 6, 630 (2011)].

قيم البحث

اقرأ أيضاً

We combined periodic ripples and electrostatic potentials to form curved graphene superlattices and studied the effects of space-dependent Fermi velocity induced from curvature on their electronic properties. With equal periods and symmetric potentia ls, the Dirac points do not move, but their locations shift under asymmetric potentials. This shift can be tuned by curvature and potentials. Tunable extra gaps in band structures can appear with unequal periods. The existence of new Dirac points is proposed, such that these new Dirac points can appear under smaller potentials with curvature, and their locations can be changed even under a fixed potential by adjusting the curvature. Our results suggest that curvature provides a new possible dimension to tune the electronic properties in graphene superlattices and a platform to more easier study physics near new Dirac points.
We consider the effect of the Coulomb interaction in a nonsymmorphic Dirac semimetal, leading to collective charge oscillation modes (plasmons), focusing on the model originally predicted by Young and Kane [Phys. Rev. Lett. 115, 126803 (2015)]. We mo del the system in a two-dimensional square-lattice and evaluate the density-density correlation function within the random-phase approximation (RPA) in presence of the Coulomb interaction. The non-interacting band-structure consists of three band-touching points, near which the electronic states follow Dirac equations. Two of these Dirac nodes, at the momentum points $X_1$ and $X_2$ are anisotropic, i.e, disperses with different velocities in different directions, whereas the third Dirac point at $M$ is isotropic. Interestingly we find that, the system of these three Dirac nodes hold a single low-energy plasmon mode, within its particle-hole gap, that disperses in isotropic manner, in the case when the nodes at $X_1$ and $X_2$ are related by symmetry. We also show this analytically using a long-wavelength approximation. We discuss effects of perturbations that can give rise to anisotropic plasmon dispersions and comment on possible experimental observation of our prediction.
Graphene on hexagonal boron nitride (hBN) can exhibit a topological phase via mutual crystallographic alignment. Recent measurements of nonlocal resistance ($R_{nl}$) near the secondary Dirac point (SDP) in ballistic graphene/hBN superlattices have b een interpreted as arising due to the quantum valley Hall state. We report hBN/graphene/hBN superlattices in which $R_{nl}$ at SDP is negligible, but below 60 K approaches the value of $h/2e^{2}$ in zero magnetic field at the primary Dirac point with a characteristic decay length of 2 ${mu}$m. Furthermore, nonlocal transport transmission probabilities based on the Landauer-Buttiker formalism show evidence for spin-degenerate ballistic valley-helical edge modes, which are key for the development of valleytronics
We study the electromagnetic response and surface electromagnetic modes in a generic gapped Dirac material under pumping with circularly polarized light. The valley imbalance due to pumping leads to a net Berry curvature, giving rise to a finite tran sverse conductivity. We discuss the appearance of nonreciprocal chiral edge modes, their hybridization and waveguiding in a nanoribbon geometry, and giant polarization rotation in nanoribbon arrays.
We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance, at zero temperature with no interlayer tunneling. We use the random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the plasmon frequencies and damping rates depend considerably on interlayer correlation parameters, electron densities and dielectric constants of the contacting media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا