ﻻ يوجد ملخص باللغة العربية
Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper we explore possibilities to realize a thin absorbing layer which produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a wide-band-matched thin resonant absorber, invisible in reflection, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cells, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create non-reflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultra-compact wave filters and selective multi-frequency sensors.
Impedance mismatch between free space and absorptive materials is a fundamental issue plaguing the pursue of high-efficiency light absorption. In this work, we design and numerically demonstrate a type of non-resonant impedance-matched optical metasu
Coherent perfect absorption (CPA) refers to interferometrically induced complete absorption of incident light by a partial absorber independently of its intrinsic absorption (which may be vanishingly small) or its thickness. CPA is typically realized
We study the optimal diffusive transmission and absorption of broadband or polychromatic light in a disordered medium. By introducing matrices describing broadband transmission and reflection, we formulate an extremal eigenvalue problem where the opt
The Brewsters law predicts zero reflection of p-polarization on a dielectric surface at a particular angle. However, when loss is introduced into the permittivity of the dielectric, the Brewster condition breaks down and reflection unavoidably appear
For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens metaatoms are typically used to eliminate reflection and achieve a high transmission power efficiency together with a wide transmission phase coverage. W