ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole feedback in the luminous quasar PDS 456

144   0   0.0 ( 0 )
 نشر من قبل Emanuele Nardini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband X-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflows kinetic power larger than 10^46 ergs per second is enough to provide the feedback required by models of black hole and host galaxy co-evolution.



قيم البحث

اقرأ أيضاً

New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing argument, the coronal size is inferred to be about 30 gravitational radii for a black hole mass of $10^{9} {rm M}_{odot}$ and the total flare energy exceeds $10^{51}$ erg. A hardening of the X-ray emission accompanied the flare, with the photon index decreasing from $Gamma=2.2$ to $Gamma=1.7$ and back again. The flare is produced in the X-ray corona, the lack of any optical or UV variability being consistent with a constant accretion rate. Simultaneous XMM-Newton and NuSTAR observations were performed, $1-3$ days after the flare peak and during the decline phase. These caught PDS 456 in a bright, bare state, where no disc wind absorption features are apparent. The hard X-ray spectrum shows a high energy roll-over, with an e-folding energy of $E_{rm fold}=51^{+11}_{-8}$ keV. The deduced coronal temperature, of $kT=13$ keV, is one of the coolest measured in any AGN and PDS 456 lies well below the predicted pair annihilation line in X-ray corona. The spectral variability, becoming softer when fainter following the flare, is consistent with models of cooling X-ray coronae. Alternatively, an increase in a non-thermal component could contribute towards the hard X-ray flare spectrum.
We present a detailed analysis of a recent $500$ ks net exposure textit{Suzaku} observation, carried out in 2013, of the nearby ($z=0.184$) luminous (L$_{rm bol}sim10^{47}$ erg s$^{-1}$) quasar PDS 456 in which the X-ray flux was unusually low. The s hort term X-ray spectral variability has been interpreted in terms of variable absorption and/or intrinsic continuum changes. In the former scenario, the spectral variability is due to variable covering factors of two regions of partially covering absorbers. We find that these absorbers are characterised by an outflow velocity comparable to that of the highly ionised wind, i.e. $sim0.25$ c, at the $99.9%$ $(3.26sigma)$ confidence level. This suggests that the partially absorbing clouds may be the denser clumpy part of the inhomogeneous wind. Following an obscuration event we obtained a direct estimate of the size of the X-ray emitting region, to be not larger than $20~R_{rm g}$ in PDS 456.
PDS 456 is a nearby (z=0.184), luminous (L_bol ~10^47 erg/s) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant ab sorption features near 9 keV in the quasar rest--frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (~0.25c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (Nh>10^24cm^-2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of $4pi$ steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.
380 - J.Reeves 2000
X-ray and multi-wavelength observations of the most luminous known local (z<0.3) AGN, the recently discovered radio-quiet quasar PDS 456, are presented. The spectral energy distribution shows that PDS 456 has a bolometric luminosity of 1e47 erg/s, pe aking in the UV. The X-ray spectrum obtained by ASCA and RXTE shows considerable complexity. The most striking feature observed is a deep, highly-ionised, iron K edge (8.7 keV, rest-frame), originating via reprocessing from highly ionised material, possibly the inner accretion disk. PDS 456 was found to be remarkably variable for its luminosity; in one flare the X-ray flux doubled in just about 15 ksec. If confirmed this would be an unprecedented event in a high-luminosity source, with a light-crossing time corresponding to about 2RS. The implications are that either flaring occurs within the very central regions, or else that PDS 456 is a super-Eddington or relativistically beamed system.
53 - J. N. Reeves 1999
We present quasi-simultaneous ASCA and RXTE observations of the most luminous known AGN in the local (z<0.3) Universe, the recently discovered quasar PDS 456. Multiwavelength observations have been conducted which show that PDS 456 has a bolometric l uminosity of 10^47 erg/s peaking in the UV part of the spectrum. In the X-ray band the 2-10 keV (rest-frame) luminosity is 10^45 erg/s. The broad-band X-ray spectrum obtained with ASCA and RXTE contains considerable complexity. The most striking feature observed is a very deep, ionised iron K edge, observed at 8.7 keV in the quasar rest-frame. We find that these features are consistent with reprocessing from highly ionised matter, probably the inner accretion disk. PDS 456 appeared to show a strong (factor of 2.1) outburst in just 17ksec, although non-intrinsic sources cannot be completely ruled out. If confirmed, this would be an unusual event for such a high-luminosity source, with the light-crossing-time corresponding to 2 Schwarzschild radii. The implication would be that flaring occurs within the very central regions, or else that PDS 456 is a `super-Eddington or relativistically beamed system. Overall we conclude on the basis of the extreme blue/UV luminosity, the rapid X-ray variability and from the imprint of highly ionised material on the X-ray spectrum, that PDS 456 is a quasar with an unusually high accretion rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا