ترغب بنشر مسار تعليمي؟ اضغط هنا

Mutually Testing Processes

325   0   0.0 ( 0 )
 نشر من قبل Giovanni Bernardi
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Giovanni Bernardi




اسأل ChatGPT حول البحث

In the standard testing theory of DeNicola-Hennessy one process is considered to be a refinement of another if every test guaranteed by the former is also guaranteed by the latter. In the domain of web services this has been recast, with processes viewed as servers and tests as clients. In this way the standard refinement preorder between servers is determined by their ability to satisfy clients. But in this setting there is also a natural refinement preorder between clients, determined by their ability to be satisfied by servers. In more general settings where there is no distinction between clients and servers, but all processes are peers, there is a further refinement preorder based on the mutual satisfaction of peers. We give a uniform account of these three preorders. In particular we give two characterisations. The first is behavioural, in terms of traces and ready sets. The second, for finite processes, is equational.



قيم البحث

اقرأ أيضاً

242 - Rob van Glabbeek 2019
May and must testing were introduced by De Nicola and Hennessy to define semantic equivalences on processes. May-testing equivalence exactly captures safety properties, and must-testing equivalence liveness properties. This paper proposes reward test ing and shows that the resulting semantic equivalence also captures conditional liveness properties. It is strictly finer than both the may- and must-testing equivalence.
In 1992 Wang & Larsen extended the may- and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to fin d complete axiomatisations and alternative characterisations for these preorders. This paper solves both problems for finite processes with silent moves. It characterises the may preorder in terms of simulation, and the must preorder in terms of failure simulation. It also gives a characterisation of both preorders using a modal logic. Finally it axiomatises both preorders over a probabilistic version of CSP.
464 - Yuxin Deng 2011
We introduce a notion of real-valued reward testing for probabilistic processes by extending the traditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may and must preorders turn out to be inverses. We sh ow that for convergent processes with finitely many states and transitions, but not in the presence of divergence, the real-reward must-testing preorder coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we characterise the usual resolution-based testing in terms of the weak transitions of processes, without having to involve policies, adversaries, schedulers, resolutions, or similar structures that are external to the process under investigation. This requires establishing the continuity of our function for calculating testing outcomes.
The combination of nondeterminism and probability in concurrent systems lead to the development of several interpretations of process behavior. If we restrict our attention to linear properties only, we can identify three main approaches to trace and testing semantics: the trace distributions, the trace-by-trace and the extremal probabilities approaches. In this paper, we propose novel notions of behavioral metrics that are based on the three classic approaches above, and that can be used to measure the disparities in the linear behavior of processes wrt trace and testing semantics. We study the properties of these metrics, like non-expansiveness, and we compare their expressive powers.
148 - Marco Bernardo 2014
Two of the most studied extensions of trace and testing equivalences to nondeterministic and probabilistic processes induce distinctions that have been questioned and lack properties that are desirable. Probabilistic trace-distribution equivalence di fferentiates systems that can perform the same set of traces with the same probabilities, and is not a congruence for parallel composition. Probabilistic testing equivalence, which relies only on extremal success probabilities, is backward compatible with testing equivalences for restricted classes of processes, such as fully nondeterministic processes or generative/reactive probabilistic processes, only if specific sets of tests are admitted. In this paper, n
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا