ترغب بنشر مسار تعليمي؟ اضغط هنا

Codimension two defects and the Springer correspondence

137   0   0.0 ( 0 )
 نشر من قبل Aswin Balasubramanian
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

One can associate an invariant to a large class of regular codimension two defects of the six dimensional $(0,2)$ SCFT $mathscr{X}[j]$ using the classical Springer correspondence. Such an association allows a simple description of S-duality of associated Gaiotto-Witten boundary conditions in $mathcal{N}=4$ SYM for arbitrary gauge group and by extension, a determination of certain local aspects of class $mathcal{S}$ constructions. I point out that the problem of textit{classifying} the corresponding boundary conditions in $mathcal{N}=4$ SYM is intimately tied to possible symmetry breaking patterns in the bulk theory. Using the Springer correspondence and the representation theory of Weyl groups, I construct a pair of functors between the class of boundary conditions in the theory in the phase with broken gauge symmetry and those in the phase with unbroken gauge symmetry.



قيم البحث

اقرأ أيضاً

Codimension two defects of the $(0,2)$ six dimensional theory $mathscr{X}[mathfrak{j}]$ have played an important role in the understanding of dualities for certain $mathcal{N}=2$ SCFTs in four dimensions. These defects are typically understood by the ir behaviour under various dimensional reduction schemes. In their various guises, the defects admit partial descriptions in terms of singularities of Hitchin systems, Nahm boundary conditions or Toda operators. Here, a uniform dictionary between these descriptions is given for a large class of such defects in $mathscr{X}[mathfrak{j}], mathfrak{j} in A,D,E$.
We study the localization of gravity on string-like defects in codimension two. We point out that the gravity-localizing `local cosmic string spacetime has an orbifold singularity at the horizon. The supergravity embedding and the AdS/CFT corresponde nce suggest ways to resolve the singularity. We find two resolutions of the singularity that have a semiclassical gravity description and study their effect on the low-energy physics on the defect. The first resolution leads, at long distances, to a codimension one Randall-Sundrum scenario. In the second case, the infrared physics is like that of a conventional finite-size Kaluza-Klein compactification, with no power-law corrections to the gravitational potential. Similar resolutions apply also in higher codimension gravity-localizing backgrounds.
In this paper we introduce a certain class of families of Hessenberg varieties arising from Springer theory for symmetric spaces. We study the geometry of those Hessenberg varieties and investigate their monodromy representations in detail using the geometry of complete intersections of quadrics. We obtain decompositions of these monodromy representations into irreducibles and compute the Fourier transforms of the IC complexes associated to these irreducible representations. The results of the paper refine (part of) the Springer correspondece for the split symmetric pair (SL(N),SO(N)) in [CVX2].
In this paper we compute the cohomology of the Fano varieties of $k$-planes in the smooth complete intersection of two quadrics in $mathbb{P}^{2g+1}$, using Springer theory for symmetric spaces.
The Springer resolution of the nilpotent cone is used to give a geometric construction of the irreducible representations of Weyl groups. Borho and MacPherson obtain the Springer correspondence by applying the decomposition theorem to the Springer re solution, establishing an injective map from the set of irreducible Weyl group representations to simple equivariant perverse sheaves on the nilpotent cone. In this manuscript, we consider a generalization of the Springer resolution using a variety defined by the first author. Our main result shows that in the type A case, applying the decomposition theorem to this map yields all simple perverse sheaves on the nilpotent cone with multiplicity as predicted by Lusztigs generalized Springer correspondence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا