ترغب بنشر مسار تعليمي؟ اضغط هنا

Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

122   0   0.0 ( 0 )
 نشر من قبل Fabrice Matichard
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isolating ground-based interferometric gravitational wave observatories from environmental disturbances is one of the great challenges of the advanced detector era. In order to directly observe gravitational waves, the detector components and test masses must be highly inertially decoupled from the ground motion not only to sense the faint strain of space-time induced by gravitational waves, but also to maintain the resonance of the very sensitive 4 km interferometers. This article presents the seismic isolation instrumentation and strategy developed for Advanced LIGO interferometers. It reviews over a decade of research on active isolation in the context of gravitational wave detection, and presents the performance recently achieved with the Advanced LIGO observatory. Lastly, it discusses prospects for future developments in active seismic isolation and the anticipated benefits to astrophysical gravitational wave searches. Beyond gravitational wave research, the goal of this article is to provide detailed isolation strategy guidelines for sensitive ground-based physics experiments that may benefit from similar levels of inertial isolation.



قيم البحث

اقرأ أيضاً

This paper presents the results of the past seven years of experimental investigation and testing done on the two-stage twelve-axis vibration isolation platform for Advanced LIGO gravity waves observatories. This five-ton two-and-half-meter wide syst em supports more than a 1000 kg of very sensitive equipment. It provides positioning capability and seismic isolation in all directions of translation and rotation. To meet the very stringent requirements of Advanced LIGO, the system must provide more than three orders of magnitude of isolation over a very large bandwidth. It must bring the motion below 10^(-11) m/(Hz)^0.5 at 1 Hz and 10^(-12) m/(Hz)^0.5 at 10 Hz. A prototype of this system has been built in 2006. It has been extensively tested and analyzed during the following two years. This paper shows how the experimental results obtained with the prototype were used to engineer the final design. It highlights how the engineering solutions implemented not only improved the isolation performance but also greatly simplified the assembly, testing, and commissioning process. During the past two years, five units have been constructed, tested, installed and commissioned at each of the two LIGO observatories. Five other units are being built for an upcoming third observatory. The test results presented show that the system meets the motion requirements, and reach the sensor noise in the control bandwidth.
The Advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains c aused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.
Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly re duces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.
The Advanced LIGO detectors are sophisticated opto-mechanical devices. At the core of their operation is feedback control. The Advanced LIGO project developed a custom digital control and data acquisition system to handle the unique needs of this new breed of astronomical detector. The advligorts is the software component of this system. This highly modular and extensible system has enabled the unprecedented performance of the LIGO instruments, and has been a vital component in the direct detection of gravitational waves.
New generations of gravity wave detectors require unprecedented levels of vibration isolation. This paper presents the final design of the vibration isolation and positioning platform used in Advanced LIGO to support the interferometers core optics. This five-ton two-and-half-meter wide system operates in ultra-high vacuum. It features two stages of isolation mounted in series. The stages are imbricated to reduce the overall height. Each stage provides isolation in all directions of translation and rotation. The system is instrumented with a unique combination of low noise relative and inertial sensors. The active control provides isolation from 0.1 Hz to 30 Hz. It brings the platform motion down to 10^(-11) m/Hz^(0.5) at 1 Hz. Active and passive isolation combine to bring the platform motion below 10^(-12) m/Hz^(0.5) at 10 Hz. The passive isolation lowers the motion below 10^(-13) m/Hz^(0.5) at 100 Hz. The paper describes how the platform has been engineered not only to meet the isolation requirements, but also to permit the construction, testing, and commissioning process of the fifteen units needed for Advanced LIGO observatories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا