ترغب بنشر مسار تعليمي؟ اضغط هنا

Link between K-absorption edges and thermodynamic properties of warm-dense plasmas established by improved first-principles method

152   0   0.0 ( 0 )
 نشر من قبل Wei Kang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A precise calculation that translates shifts of X-ray K-absorption edges to variations of thermodynamic properties allows quantitative characterization of interior thermodynamic properties of warm dense plasmas by X-ray absorption techniques, which provides essential information for inertial confinement fusion and other astrophysical applications. We show that this interpretation can be achieved through an improved first-principles method. Our calculation shows that the shift of K-edges exhibits selective sensitivity to thermal parameters and thus would be a suitable temperature index to warm dense plasmas. We also show with a simple model that the shift of K-edges can be used to detect inhomogeneity inside warm dense plasmas when combined with other experimental tools.



قيم البحث

اقرأ أيضاً

Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.
We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare wit h available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.
We briefly review analytic approximations of thermodynamic functions of fully ionized nonideal electron-ion plasmas, applicable in a wide range of plasma parameters, including the domains of nondegenerate and degenerate, nonrelativistic and relativis tic electrons, weakly and strongly coupled Coulomb liquids, classical and quantum Coulomb crystals. We present improvements to previously published approximations. Our code for calculation of thermodynamic functions based on the reviewed approximations is made publicly available.
298 - A. Calisti , S. Ferri , C. Mosse 2007
The aim of this work is the investigation of the statistical properties of local electric fields in an ion-electron two component plasmas for coupled conditions. The stochastic fields at a charged or at a neutral point in plasmas involve both slow an d fast fluctuation characteristics. The statistical study of these local fields based on a direct time average is done for the first time. For warm and dense plasma conditions, typically $N_{e}approx 10^{18}cm^{-3}$, $% T_{e}approx 1eV$, well controlled molecular dynamics (MD) simulations of neutral hydrogen, protons and electrons have been carried out. Relying on these textit{ab initio} MD calculations this work focuses on an analysis of the concepts of statistically independent slow and fast local field components, based on the consideration of a time averaged electric field. Large differences are found between the results of these MD simulations and corresponding standard results based on static screened fields. The effects discussed are of importance for physical phenomena connected with stochastic electric field fluctuations, e.g., for spectral line broadening in dense plasmas.
Exploring and understanding ultrafast processes at the atomic level is a scientific challenge. Femtosecond X-ray Absorption Spectroscopy (XAS) is an essential experimental probing technic, as it can simultaneously reveal both electronic and atomic st ructures, and thus unravel their non-equilibrium dynamic interplay which is at the origin of most of the ultrafast mechanisms. However, despite considerable efforts, there is still no femtosecond X-ray source suitable for routine experiments. Here we show that betatron radiation from relativistic laser-plasma interaction combines ideal features for femtosecond XAS. It has been used to investigate the non-equilibrium transition of a copper sample brought at extreme conditions of temperature and pressure by a femtosecond laser pulse. We measured a rise time of the electron temperature below 100 fs. This first experiment demonstrates the great potential of the betatron source and paves the way to a new class of ultrafast experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا