ﻻ يوجد ملخص باللغة العربية
We perform a spectral analysis of a sample of 11 medium redshift (1.5 < z < 2.2) quasars. Our sample all have optical spectra from the SDSS, infrared spectra from GNIRS and TSPEC, and X-ray spectra from XMM-Newton. We first analyse the Balmer broad emission line profiles which are shifted into the IR spectra to constrain black hole masses. Then we fit an energy-conserving, three component accretion model of the broadband spectral energy distribution (SED) to our multi-wavelength data. Five out of the 11 quasars show evidence of an SED peak, allowing us to constrain their bolometric luminosity from these models and estimate their mass accretion rates. Based on our limited sample, we suggest that estimating bolometric luminosities from L_5100A and L_2-10keV may be unreliable, as has been also noted for a low-redshift, X-ray selected AGN sample.
We continue our study of the spectral energy distributions (SEDs) of 11 AGN at 1.5 < z < 2.2, with optical-NIR spectra, X-ray data and mid-IR photometry. In a previous paper we presented the observations and models; in this paper we explore the param
An extensive multi-satellite campaign on NGC 5548 has revealed this archetypal Seyfert-1 galaxy to be in an exceptional state of persistent heavy absorption. Our observations taken in 2013-2014 with XMM-Newton, Swift, NuSTAR, INTEGRAL, Chandra, HST a
We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL quasar FIRST J1556+3517. We investigated a number of models of va
From Swift monitoring of a sample of active galactic nuclei (AGN) we found a transient X-ray obscuration event in Seyfert-1 galaxy NGC 3227, and thus triggered our joint XMM-Newton, NuSTAR, and Hubble Space Telescope (HST) observations to study this
We report on X-ray measurements constraining the spectral energy distribution (SED) of the high-redshift $z=5.18$ blazar SDSS J013127.34$-$032100.1 with new XMM-Newton and NuSTAR exposures. The blazars X-ray spectrum is well fit by a power law with $